The beta Subunit of Nascent Polypeptide Associated Complex Plays A Role in Flowers and Siliques Development of Arabidopsis thaliana
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTC18043
Ministerstvo Školství, Mládeže a Tělovýchovy
18-02448S
Grantová Agentura České Republiky
19-01723S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000738
European Regional Development Fund
LM2015043
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/3.2.00/08.0144
Operational Program Research and Development for Innovations
PubMed
32192231
PubMed Central
PMC7139743
DOI
10.3390/ijms21062065
PII: ijms21062065
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, chaperone, flower bud proteome, flower bud transcriptome, male gametophyte, nascent polypeptide-associated complex,
- MeSH
- alely MeSH
- Arabidopsis fyziologie MeSH
- fenotyp MeSH
- geneticky modifikované rostliny MeSH
- homozygot MeSH
- klíčení MeSH
- květy fyziologie MeSH
- molekulární chaperony genetika metabolismus MeSH
- mutace MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteomika metody MeSH
- regulace genové exprese u rostlin MeSH
- semena rostlinná MeSH
- transkriptom MeSH
- vývoj rostlin * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- molekulární chaperony MeSH
- nascent-polypeptide-associated complex MeSH Prohlížeč
- proteiny huseníčku MeSH
The nascent polypeptide-associated (NAC) complex was described in yeast as a heterodimer composed of two subunits, α and β, and was shown to bind to the nascent polypeptides newly emerging from the ribosomes. NAC function was widely described in yeast and several information are also available about its role in plants. The knock down of individual NAC subunit(s) led usually to a higher sensitivity to stress. In Arabidopsis thaliana genome, there are five genes encoding NACα subunit, and two genes encoding NACβ. Double homozygous mutant in both genes coding for NACβ was acquired, which showed a delayed development compared to the wild type, had abnormal number of flower organs, shorter siliques and greatly reduced seed set. Both NACβ genes were characterized in more detail-the phenotype of the double homozygous mutant was complemented by a functional NACβ copy. Then, both NACβ genes were localized to nuclei and cytoplasm and their promoters were active in many organs (leaves, cauline leaves, flowers, pollen grains, and siliques together with seeds). Since flowers were the most affected organs by nacβ mutation, the flower buds' transcriptome was identified by RNA sequencing, and their proteome by gel-free approach. The differential expression analyses of transcriptomic and proteomic datasets suggest the involvement of NACβ subunits in stress responses, male gametophyte development, and photosynthesis.
Zobrazit více v PubMed
Kogan G.L., Gvozdev V.A. Multifunctional nascent polypeptide-associated complex (NAC) Mol. Biol. 2014;48:189–196. doi: 10.1134/S0026893314020095. PubMed DOI
Spreter T., Pech M., Beatrix B. The crystal structure of archaeal nascent polypeptide-associated complex (NAC) reveals a unique fold and the presence of a ubiquitin-associated domain. J. Boil. Chem. 2005;280:15849–15854. doi: 10.1074/jbc.M500160200. PubMed DOI
Rospert S., Dubaquié Y., Gautschi M. Nascent-polypeptide-associated complex. Cell. Mol. Life Sci. 2002;59:1632–1639. doi: 10.1007/PL00012490. PubMed DOI PMC
Reimann B., Bradsher J., Franke J., Hartmann E., Wiedmann M., Prehn S., Wiedmann B. Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast. 1999;15:397–407. doi: 10.1002/(SICI)1097-0061(19990330)15:5<397::AID-YEA384>3.0.CO;2-U. PubMed DOI
Ott A.-K., Locher L., Koch M., Deuerling E. Functional dissection of the nascent polypeptide-associated complex in Saccharomyces cerevisiae. PLoS ONE. 2015;10:e0143457. doi: 10.1371/journal.pone.0143457. PubMed DOI PMC
Wang S., Sakai H., Wiedmann M. NAC covers ribosome-associated nascent chains thereby forming a protective environment for regions of nascent chains just emerging from the peptidyl transferase center. J. Cell Biol. 1995;130:519–528. doi: 10.1083/jcb.130.3.519. PubMed DOI PMC
Wiedmann B., Sakai H., Davis T.A., Wiedmann M. A protein complex required for signal-sequence-specific sorting and translocation. Nature. 1994;370:434–440. doi: 10.1038/370434a0. PubMed DOI
Martin E.M., Jackson M.P., Gamerdinger M., Gense K., Karamonos T.K., Humes J., Deuerling E., Ashcroft A.E., Radford S.E. Conformational flexibility within the nascent polypeptide-associated complex enables its interactions with structurally diverse client proteins. J. Biol. Chem. 2018;293:8554–8568. doi: 10.1074/jbc.RA117.001568. PubMed DOI PMC
Wegrzyn R.D., Hofmann D., Merz F., Nikolay R., Rauch T., Graf C., Deuerling E. A conserved motif is prerequisite for the interaction of NAC with ribosomal protein L23 and nascent chains. J. Biol. Chem. 2005;281:2847–2857. doi: 10.1074/jbc.M511420200. PubMed DOI
Möller I., Beatrix B., Kreibich G., Sakai H., Lauring B., Wiedmann M. Unregulated exposure of the ribosomal M-site caused by NAC depletion results in delivery of non-secretory polypeptides to the Sec61 complex. FEBS Lett. 1998;441:1–5. doi: 10.1016/S0014-5793(98)01440-9. PubMed DOI
Funfschilling U., Rospert S. Nascent polypeptide–associated complex stimulates protein import into yeast mitochondria. Mol. Biol. Cell. 1999;10:3289–3299. doi: 10.1091/mbc.10.10.3289. PubMed DOI PMC
Gamerdinger M., Hanebuth M.A., Frickey T., Deuerling E. The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum. Science. 2015;348:201–207. doi: 10.1126/science.aaa5335. PubMed DOI
Koplin A., Preissler S., Ilina Y., Koch M., Scior A., Erhardt M., Deuerling E. A dual function for chaperones SSB–RAC and the NAC nascent polypeptide–associated complex on ribosomes. J. Cell Biol. 2010;189:57–68. doi: 10.1083/jcb.200910074. PubMed DOI PMC
Bloss T.A., Witze E.S., Rothman J.H. Suppression of CED-3-independent apoptosis by mitochondrial βNAC in Caenorhabditis elegans. Nature. 2003;424:1066–1071. doi: 10.1038/nature01920. PubMed DOI
Deng J.M., Behringer R.R. An insertional mutation in theBTF3 transcription factor gene leads to an early postimplantation lethality in mice. Transgenic Res. 1995;4:264–269. doi: 10.1007/BF01969120. PubMed DOI
Markesich D.C., Gajewski K.M., Nazimiec M.E., Beckingham K. bicaudal encodes the Drosophila beta NAC homolog, a component of the ribosomal translational machinery. Development. 2000;127:559–572. PubMed
Brockstedt E., Otto A., Rickers A., Bommert K., Wittmann-Liebold B. Preparative high-resolution two-dimensional electrophoresis enables the identification of RNA polymerase B transcription factor 3 as an apoptosis-associated protein in the human BL60-2 Burkitt lymphoma cell line. Protein J. 1999;18:225–231. doi: 10.1023/A:1020636308270. PubMed DOI
Moreau A., Yotov W.V., Glorieux F.H., St-Arnaud R. Bone-Specific Expression of the alpha chain of the nascent polypeptide-associated complex, a coactivator potentiating c-Jun-mediated transcription. Mol. Cell. Biol. 1998;18:1312–1321. doi: 10.1128/MCB.18.3.1312. PubMed DOI PMC
Yotov W.V., Moreau A., St-Arnaud R. The alpha chain of the nascent polypeptide-associated complex functions as a transcriptional coactivator. Mol. Cell. Boil. 1998;18:1303–1311. doi: 10.1128/MCB.18.3.1303. PubMed DOI PMC
Berardini T., Reiser L., Li N., Mezheritsky Y., Muller R., Strait E., Huala E. The Arabidopsis information resource: Making and mining the "gold standard" annotated reference plant genome. Genesis. 2015;53:474–485. doi: 10.1002/dvg.22877. PubMed DOI PMC
Ding Y., Jia Y., Shi Y., Zhang X., Song C., Gong Z., Yang S. OST 1-mediated BTF 3L phosphorylation positively regulates CBF s during plant cold responses. EMBO J. 2018;37:e98228. doi: 10.15252/embj.201798228. PubMed DOI PMC
Park H.L., Cho M.-H., Shin D.H., Bhoo S.H., Hahn T.-R. Molecular characterization of phytochrome-interacting nascent polypeptide associated complex protein in Arabidopsis thaliana. J. Korean Soc. Appl. Boil. Chem. 2012;55:323–326. doi: 10.1007/s13765-012-1159-9. DOI
Freire M.A. Translation initiation factor (iso) 4E interacts with BTF3, the β subunit of the nascent polypeptide-associated complex. Gene. 2005;345:271–277. doi: 10.1016/j.gene.2004.11.030. PubMed DOI
Yang K.-S., Kim H.-S., Jin U.-H., Lee S.S., Park J.-A., Lim Y.P., Pai H.-S. Silencing of NbBTF3 results in developmental defects and disturbed gene expression in chloroplasts and mitochondria of higher plants. Planta. 2007;225:1459–1469. doi: 10.1007/s00425-006-0453-3. PubMed DOI
Ma H.-Z., Liu G.-Q., Li C.-W., Kang G., Guo T.-C. Identification of the TaBTF3 gene in wheat (Triticum aestivum L.) and the effect of its silencing on wheat chloroplast, mitochondria and mesophyll cell development. Biochem. Biophys. Res. Commun. 2012;426:608–614. doi: 10.1016/j.bbrc.2012.08.137. PubMed DOI
Wang W., Xu M., Wang Y., Jamil M. Basal transcription factor 3 plays an important role in seed germination and seedling growth of rice. BioMed Res. Int. 2014;2014:465739. doi: 10.1155/2014/465739. PubMed DOI PMC
Maršálová L., Vítámvás P., Hynek R., Prášil I.T., Kosová K. Proteomic response of Hordeum vulgare cv. Tadmor and Hordeum marinum to salinity stress: Similarities and differences between a glycophyte and a halophyte. Front. Plant Sci. 2016;7:2567. doi: 10.3389/fpls.2016.01154. PubMed DOI PMC
Karan R., Subudhi P.K. Overexpression of a nascent polypeptide associated complex gene (SaβNAC) of Spartina alterniflora improves tolerance to salinity and drought in transgenic Arabidopsis. Biochem. Biophys. Res. Commun. 2012;424:747–752. doi: 10.1016/j.bbrc.2012.07.023. PubMed DOI
Kang G., Ma H., Liu G., Han Q., Li C., Guo T. Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat. Mol. Genet. Genom. 2013;288:591–599. doi: 10.1007/s00438-013-0773-5. PubMed DOI
Yin X., Nishimura M., Hajika M., Komatsu S. Quantitative proteomics reveals the flooding-tolerance mechanism in mutant and abscisic acid-treated soybean. J. Proteome Res. 2016;15:2008–2025. doi: 10.1021/acs.jproteome.6b00196. PubMed DOI
Huh S.U., Kim K.-J., Paek K.-H. Capsicum annuum basic transcription factor 3 (CaBtf3) regulates transcription of pathogenesis-related genes during hypersensitive response upon Tobacco mosaic virus infection. Biochem. Biophys. Res. Commun. 2012;417:910–917. doi: 10.1016/j.bbrc.2011.12.074. PubMed DOI
Kaido M., Inoue Y., Takeda Y., Sugiyama K., Takeda A., Mori M., Tamai A., Meshi T., Okuno T., Mise K. Downregulation of the NbNACa1 gene encoding a movement-protein-interacting protein reduces cell-to-cell movement of Brome mosaic virus in Nicotiana benthamiana. Mol. Plant-Microbe Interactions. 2007;20:671–681. doi: 10.1094/MPMI-20-6-0671. PubMed DOI
Reňák D., Dupľáková N., Honys D. Wide-scale screening of T-DNA lines for transcription factor genes affecting male gametophyte development in Arabidopsis. Sex. Plant Reprod. 2011;25:39–60. doi: 10.1007/s00497-011-0178-8. PubMed DOI
Boavida L.C., McCormick S. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J. 2007;52:570–582. doi: 10.1111/j.1365-313X.2007.03248.x. PubMed DOI
Qin Y., Leydon A.R., Manziello A., Pandey R., Mount D., Denic S., Vasic B., Johnson M., Palanivelu R. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet. 2009;5:e1000621. doi: 10.1371/journal.pgen.1000621. PubMed DOI PMC
Regan S.M., Moffatt B.A. Cytochemical analysis of pollen development in wild-type Arabidopsis and a male sterile mutant. Plant. Cell. 1990;2:877–889. doi: 10.2307/3869324. PubMed DOI PMC
Hafidh S., Potěšil D., Fila J., Čapková V., Zdráhal Z., Honys D. Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biol. 2016;17:81. doi: 10.1186/s13059-016-0928-x. PubMed DOI PMC
Apel K., Bohlmann H. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol. Biol. 1995;29:637–646. PubMed
Twell D., Yamaguchi J., McCormick S. Pollen-specific gene expression in transgenic plants: Coordinate regulation of two different tomato gene promoters during microsporogenesis. Development. 1990;109:705–713. PubMed
Steffen J.G., Kang I.-H., Macfarlane J., Drews G.N. Identification of genes expressed in the Arabidopsis female gametophyte. Plant J. 2007;51:281–292. doi: 10.1111/j.1365-313X.2007.03137.x. PubMed DOI
Nakabayashi K., Okamoto M., Koshiba T., Kamiya Y., Nambara E. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: Epigenetic and genetic regulation of transcription in seed. Plant J. 2005;41:697–709. doi: 10.1111/j.1365-313X.2005.02337.x. PubMed DOI
Schmid M., Davison T.S., Henz S.R., Pape U.J., Demar M., Vingron M., Schölkopf B., Weigel D., Lohmann J.U. A gene expression map of Arabidopsis thaliana development. Nat. Genet. 2005;37:501–506. doi: 10.1038/ng1543. PubMed DOI
Cardarelli M., Cecchetti V. Auxin polar transport in stamen formation and development: How many actors? Front. Plant Sci. 2014;5:333. doi: 10.3389/fpls.2014.00333. PubMed DOI PMC
Supek F., Bosnjak M., Skunca N., Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6:e21800. doi: 10.1371/journal.pone.0021800. PubMed DOI PMC
Winter D., Vinegar B., Nahal H., Ammar R., Wilson G., Provart N.J. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE. 2007;2:e718. doi: 10.1371/journal.pone.0000718. PubMed DOI PMC
Tsukaya H., Byrne M.E., Horiguchi G., Sugiyama M., Van Lijsebettens M., Lenhard M. How do ‘housekeeping’ genes control organogenesis?—unexpected new findings on the role of housekeeping genes in cell and organ differentiation. J. Plant Res. 2012;126:3–15. doi: 10.1007/s10265-012-0518-2. PubMed DOI
Riechmann J.L. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res. 1996;24:3134–3141. doi: 10.1093/nar/24.16.3134. PubMed DOI PMC
Running M.P., Fletcher J.C., Meyerowitz E.M. The WIGGUM gene is required for proper regulation of floral meristem size in Arabidopsis. Development. 1998;125:2545–2553. PubMed
McKim S.M., Routier-Kierzkowska A.-L., Monniaux M., Kierzkowski D., Pieper B., Smith R.S., Tsiantis M., Hay A.S. Seasonal regulation of petal number. Plant Physiol. 2017;175:886–903. doi: 10.1104/pp.17.00563. PubMed DOI PMC
Pelaz S., Ditta G.S., Baumann E., Wisman E., Yanofsky M.F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature. 2000;405:200–203. doi: 10.1038/35012103. PubMed DOI
Yotov W.V., St-Arnaud R. Differential splicing-in of a proline-rich exon converts alphaNAC into a muscle-specific transcription factor. Genes Dev. 1996;10:1763–1772. doi: 10.1101/gad.10.14.1763. PubMed DOI
Zheng X.M., Black D., Chambon P., Egly J.M. Sequencing and expression of complementary DNA for the general transcription factor BTF3. Nature. 1990;344:556–559. doi: 10.1038/344556a0. PubMed DOI
Liu Y., Hu Y., Li X., Niu L., Teng M. The crystal structure of the human nascent polypeptide-associated complex domain reveals a nucleic acid-binding region on the NACA subunit. Biochemistry. 2010;49:2890–2896. doi: 10.1021/bi902050p. PubMed DOI
Miller D.D., Scordilis S.P., Hepler P.K. Identification and localization of three classes of myosins in pollen tubes of Lilium longiflorum and Nicotiana alata. J. Cell Sci. 1995;108:2549–2563. PubMed
Honys D., Reňák D., Feciková J., Jedelský P., Nebesářová J., Dobrev P., Čapková V. Cytoskeleton-associated large RNP complexes in tobacco male gametophyte (EPPs) are associated with ribosomes and are involved in protein synthesis, processing, and localization. J. Proteome Res. 2009;8:2015–2031. doi: 10.1021/pr8009897. PubMed DOI
Stinson J.R., Eisenberg A.J., Willing R.P., Pe M.E., Hanson D.D., Mascarenhas J.P., Anderson J.A., Ashworth E.N. Genes expressed in the male gametophyte of flowering plants and their isolation. Plant Physiol. 1987;83:442–447. doi: 10.1104/pp.83.2.442. PubMed DOI PMC
Hafidh S., Potěšil D., Müller K., Fíla J., Michailidis C., Herrmannová A., Feciková J., Ischebeck T., Valášek L.S., Zdráhal Z., et al. Dynamics of the pollen sequestrome defined by subcellular coupled omics. Plant Physiol. 2018;178:258–282. doi: 10.1104/pp.18.00648. PubMed DOI PMC
Adamczyk B.J., Fernandez D.E. MIKC*MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol. 2009;149:1713–1723. doi: 10.1104/pp.109.135806. PubMed DOI PMC
Ge Z., Bergonci T., Zhao Y., Zou Y., Du S., Liu M.-C., Luo X., Ruan H., García-Valencia L.E., Zhong S., et al. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science. 2017;358:1596–1600. doi: 10.1126/science.aao3642. PubMed DOI PMC
Rã¶ckel N., Wolf S., Kost B., Rausch T., Greiner S., Röckel N. Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J. 2008;53:133–143. doi: 10.1111/j.1365-313X.2007.03325.x. PubMed DOI
Brownfield L., Hafidh S., Borg M., Sidorova A., Mori T., Twell D. A plant germline-specific integrator of sperm specification and cell cycle progression. PLoS Genet. 2009;5:e1000430. doi: 10.1371/journal.pgen.1000430. PubMed DOI PMC
Takahashi T., Mori T., Ueda K., Yamada L., Nagahara S., Higashiyama T., Sawada H., Igawa T. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants. Development. 2018;145:dev170076. doi: 10.1242/dev.170076. PubMed DOI
Maruyama D., Sugiyama T., Endo T., Nishikawa S.-I. Multiple BiP Genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness. Plant Cell Physiol. 2014;55:801–810. doi: 10.1093/pcp/pcu018. PubMed DOI
Sarkar N.K., Kim Y.-K., Grover A. Rice sHsp genes: Genomic organization and expression profiling under stress and development. BMC Genom. 2009;10:393. doi: 10.1186/1471-2164-10-393. PubMed DOI PMC
Wehmeyer N., Klann E.M., Hall B., Bennett A.B. Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol. 1996;112:747–757. doi: 10.1104/pp.112.2.747. PubMed DOI PMC
Xu Y.-H., Liu R., Yan L., Liu Z.-Q., Jiang S.-C., Shen Y.-Y., Wang X.-F., Zhang D.-P. Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. J. Exp. Bot. 2011;63:1095–1106. doi: 10.1093/jxb/err315. PubMed DOI PMC
Varotto C., Pesaresi P., Meurer J., Oelmüller R., Steiner-Lange S., Salamini F., Leister D. Disruption of the Arabidopsis photosystem I gene psaE1 affects photosynthesis and impairs growth. Plant J. 2000;22:115–124. doi: 10.1046/j.1365-313x.2000.00717.x. PubMed DOI
Jaiswal H., Conz C., Otto H., Wölfle T., Fitzke E., Mayer M.P., Rospert S. The chaperone network connected to human ribosome-associated complex. Mol. Cell. Boil. 2011;31:1160–1173. doi: 10.1128/MCB.00986-10. PubMed DOI PMC
Verma A.K., Diwan D., Raut S., Dobriyal N., Brown R.E., Gowda V., Hines J.K., Sahi C. Evolutionary conservation and emerging functional diversity of the cytosolic Hsp70:J protein chaperone network of Arabidopsis thaliana. G3: Genes|Genomes|Genetics. 2017;7:1941–1954. doi: 10.1534/g3.117.042291. PubMed DOI PMC
Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Weigel D., Glazebrook J. Arabidopsis: A Laboratory Manual. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY, USA: 2002.
Ogden R.C., Adams D.A. Electrophoresis in agarose and acrylamide gels. Methods Enzymol. 1987;152:61–87. PubMed
Witham F.H., Blaydes D.F., Devlin R.M. Experiments in Plant Physiology. Van Nostrand Reinhold Co.; New York, NY, USA: 1971. Experiment 15: Chlorophyll absorption spectrum and quantitative determinations; p. 245.
Mori T., Kuroiwa H., Higashiyama T., Kuroiwa T. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nature. 2005;8:64–71. doi: 10.1038/ncb1345. PubMed DOI
Shimada T.L., Shimada T., Hara-Nishimura I. A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J. 2010;61:519–528. doi: 10.1111/j.1365-313X.2009.04060.x. PubMed DOI
Karimi M., Inzé D., Depicker A. GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 2002;7:193–195. doi: 10.1016/S1360-1385(02)02251-3. PubMed DOI
Clough S.J., Bent A. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI
Hu C.-Y., Chee P., Chesney R., Zhou J., Miller P., O’Brien W. Intrinsic GUS-like activities in seed plants. Plant Cell Rep. 1990;9:1–5. doi: 10.1007/BF00232123. PubMed DOI
Andrews S. FastQC. A quality control tool for high throughput sequence data. [(accessed on 6 December 2019)];2010 Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17:10. doi: 10.14806/ej.17.1.200. DOI
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2012;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Liao Y., Smyth G.K., Shi W. The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41:e108. doi: 10.1093/nar/gkt214. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:002832. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC
Fíla J., Čapková V., Feciková J., Honys D. Impact of homogenization and protein extraction conditions on the obtained tobacco pollen proteomic patterns. Biol. Plant. 2011;55:499–506. doi: 10.1007/s10535-011-0116-5. DOI
Wiśniewski J.R., Ostasiewicz P., Mann M. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J. Proteome Res. 2011;10:3040–3049. doi: 10.1021/pr200019m. PubMed DOI
Stejskal K., Potěšil D., Zdráhal Z. Suppression of peptide sample losses in autosampler vials. J. Proteome Res. 2013;12:3057–3062. doi: 10.1021/pr400183v. PubMed DOI
Regulatory dynamics of gene expression in the developing male gametophyte of Arabidopsis