The beta Subunit of Nascent Polypeptide Associated Complex Plays A Role in Flowers and Siliques Development of Arabidopsis thaliana

. 2020 Mar 17 ; 21 (6) : . [epub] 20200317

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32192231

Grantová podpora
LTC18043 Ministerstvo Školství, Mládeže a Tělovýchovy
18-02448S Grantová Agentura České Republiky
19-01723S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000738 European Regional Development Fund
LM2015043 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/3.2.00/08.0144 Operational Program Research and Development for Innovations

The nascent polypeptide-associated (NAC) complex was described in yeast as a heterodimer composed of two subunits, α and β, and was shown to bind to the nascent polypeptides newly emerging from the ribosomes. NAC function was widely described in yeast and several information are also available about its role in plants. The knock down of individual NAC subunit(s) led usually to a higher sensitivity to stress. In Arabidopsis thaliana genome, there are five genes encoding NACα subunit, and two genes encoding NACβ. Double homozygous mutant in both genes coding for NACβ was acquired, which showed a delayed development compared to the wild type, had abnormal number of flower organs, shorter siliques and greatly reduced seed set. Both NACβ genes were characterized in more detail-the phenotype of the double homozygous mutant was complemented by a functional NACβ copy. Then, both NACβ genes were localized to nuclei and cytoplasm and their promoters were active in many organs (leaves, cauline leaves, flowers, pollen grains, and siliques together with seeds). Since flowers were the most affected organs by nacβ mutation, the flower buds' transcriptome was identified by RNA sequencing, and their proteome by gel-free approach. The differential expression analyses of transcriptomic and proteomic datasets suggest the involvement of NACβ subunits in stress responses, male gametophyte development, and photosynthesis.

Zobrazit více v PubMed

Kogan G.L., Gvozdev V.A. Multifunctional nascent polypeptide-associated complex (NAC) Mol. Biol. 2014;48:189–196. doi: 10.1134/S0026893314020095. PubMed DOI

Spreter T., Pech M., Beatrix B. The crystal structure of archaeal nascent polypeptide-associated complex (NAC) reveals a unique fold and the presence of a ubiquitin-associated domain. J. Boil. Chem. 2005;280:15849–15854. doi: 10.1074/jbc.M500160200. PubMed DOI

Rospert S., Dubaquié Y., Gautschi M. Nascent-polypeptide-associated complex. Cell. Mol. Life Sci. 2002;59:1632–1639. doi: 10.1007/PL00012490. PubMed DOI PMC

Reimann B., Bradsher J., Franke J., Hartmann E., Wiedmann M., Prehn S., Wiedmann B. Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast. 1999;15:397–407. doi: 10.1002/(SICI)1097-0061(19990330)15:5<397::AID-YEA384>3.0.CO;2-U. PubMed DOI

Ott A.-K., Locher L., Koch M., Deuerling E. Functional dissection of the nascent polypeptide-associated complex in Saccharomyces cerevisiae. PLoS ONE. 2015;10:e0143457. doi: 10.1371/journal.pone.0143457. PubMed DOI PMC

Wang S., Sakai H., Wiedmann M. NAC covers ribosome-associated nascent chains thereby forming a protective environment for regions of nascent chains just emerging from the peptidyl transferase center. J. Cell Biol. 1995;130:519–528. doi: 10.1083/jcb.130.3.519. PubMed DOI PMC

Wiedmann B., Sakai H., Davis T.A., Wiedmann M. A protein complex required for signal-sequence-specific sorting and translocation. Nature. 1994;370:434–440. doi: 10.1038/370434a0. PubMed DOI

Martin E.M., Jackson M.P., Gamerdinger M., Gense K., Karamonos T.K., Humes J., Deuerling E., Ashcroft A.E., Radford S.E. Conformational flexibility within the nascent polypeptide-associated complex enables its interactions with structurally diverse client proteins. J. Biol. Chem. 2018;293:8554–8568. doi: 10.1074/jbc.RA117.001568. PubMed DOI PMC

Wegrzyn R.D., Hofmann D., Merz F., Nikolay R., Rauch T., Graf C., Deuerling E. A conserved motif is prerequisite for the interaction of NAC with ribosomal protein L23 and nascent chains. J. Biol. Chem. 2005;281:2847–2857. doi: 10.1074/jbc.M511420200. PubMed DOI

Möller I., Beatrix B., Kreibich G., Sakai H., Lauring B., Wiedmann M. Unregulated exposure of the ribosomal M-site caused by NAC depletion results in delivery of non-secretory polypeptides to the Sec61 complex. FEBS Lett. 1998;441:1–5. doi: 10.1016/S0014-5793(98)01440-9. PubMed DOI

Funfschilling U., Rospert S. Nascent polypeptide–associated complex stimulates protein import into yeast mitochondria. Mol. Biol. Cell. 1999;10:3289–3299. doi: 10.1091/mbc.10.10.3289. PubMed DOI PMC

Gamerdinger M., Hanebuth M.A., Frickey T., Deuerling E. The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum. Science. 2015;348:201–207. doi: 10.1126/science.aaa5335. PubMed DOI

Koplin A., Preissler S., Ilina Y., Koch M., Scior A., Erhardt M., Deuerling E. A dual function for chaperones SSB–RAC and the NAC nascent polypeptide–associated complex on ribosomes. J. Cell Biol. 2010;189:57–68. doi: 10.1083/jcb.200910074. PubMed DOI PMC

Bloss T.A., Witze E.S., Rothman J.H. Suppression of CED-3-independent apoptosis by mitochondrial βNAC in Caenorhabditis elegans. Nature. 2003;424:1066–1071. doi: 10.1038/nature01920. PubMed DOI

Deng J.M., Behringer R.R. An insertional mutation in theBTF3 transcription factor gene leads to an early postimplantation lethality in mice. Transgenic Res. 1995;4:264–269. doi: 10.1007/BF01969120. PubMed DOI

Markesich D.C., Gajewski K.M., Nazimiec M.E., Beckingham K. bicaudal encodes the Drosophila beta NAC homolog, a component of the ribosomal translational machinery. Development. 2000;127:559–572. PubMed

Brockstedt E., Otto A., Rickers A., Bommert K., Wittmann-Liebold B. Preparative high-resolution two-dimensional electrophoresis enables the identification of RNA polymerase B transcription factor 3 as an apoptosis-associated protein in the human BL60-2 Burkitt lymphoma cell line. Protein J. 1999;18:225–231. doi: 10.1023/A:1020636308270. PubMed DOI

Moreau A., Yotov W.V., Glorieux F.H., St-Arnaud R. Bone-Specific Expression of the alpha chain of the nascent polypeptide-associated complex, a coactivator potentiating c-Jun-mediated transcription. Mol. Cell. Biol. 1998;18:1312–1321. doi: 10.1128/MCB.18.3.1312. PubMed DOI PMC

Yotov W.V., Moreau A., St-Arnaud R. The alpha chain of the nascent polypeptide-associated complex functions as a transcriptional coactivator. Mol. Cell. Boil. 1998;18:1303–1311. doi: 10.1128/MCB.18.3.1303. PubMed DOI PMC

Berardini T., Reiser L., Li N., Mezheritsky Y., Muller R., Strait E., Huala E. The Arabidopsis information resource: Making and mining the "gold standard" annotated reference plant genome. Genesis. 2015;53:474–485. doi: 10.1002/dvg.22877. PubMed DOI PMC

Ding Y., Jia Y., Shi Y., Zhang X., Song C., Gong Z., Yang S. OST 1-mediated BTF 3L phosphorylation positively regulates CBF s during plant cold responses. EMBO J. 2018;37:e98228. doi: 10.15252/embj.201798228. PubMed DOI PMC

Park H.L., Cho M.-H., Shin D.H., Bhoo S.H., Hahn T.-R. Molecular characterization of phytochrome-interacting nascent polypeptide associated complex protein in Arabidopsis thaliana. J. Korean Soc. Appl. Boil. Chem. 2012;55:323–326. doi: 10.1007/s13765-012-1159-9. DOI

Freire M.A. Translation initiation factor (iso) 4E interacts with BTF3, the β subunit of the nascent polypeptide-associated complex. Gene. 2005;345:271–277. doi: 10.1016/j.gene.2004.11.030. PubMed DOI

Yang K.-S., Kim H.-S., Jin U.-H., Lee S.S., Park J.-A., Lim Y.P., Pai H.-S. Silencing of NbBTF3 results in developmental defects and disturbed gene expression in chloroplasts and mitochondria of higher plants. Planta. 2007;225:1459–1469. doi: 10.1007/s00425-006-0453-3. PubMed DOI

Ma H.-Z., Liu G.-Q., Li C.-W., Kang G., Guo T.-C. Identification of the TaBTF3 gene in wheat (Triticum aestivum L.) and the effect of its silencing on wheat chloroplast, mitochondria and mesophyll cell development. Biochem. Biophys. Res. Commun. 2012;426:608–614. doi: 10.1016/j.bbrc.2012.08.137. PubMed DOI

Wang W., Xu M., Wang Y., Jamil M. Basal transcription factor 3 plays an important role in seed germination and seedling growth of rice. BioMed Res. Int. 2014;2014:465739. doi: 10.1155/2014/465739. PubMed DOI PMC

Maršálová L., Vítámvás P., Hynek R., Prášil I.T., Kosová K. Proteomic response of Hordeum vulgare cv. Tadmor and Hordeum marinum to salinity stress: Similarities and differences between a glycophyte and a halophyte. Front. Plant Sci. 2016;7:2567. doi: 10.3389/fpls.2016.01154. PubMed DOI PMC

Karan R., Subudhi P.K. Overexpression of a nascent polypeptide associated complex gene (SaβNAC) of Spartina alterniflora improves tolerance to salinity and drought in transgenic Arabidopsis. Biochem. Biophys. Res. Commun. 2012;424:747–752. doi: 10.1016/j.bbrc.2012.07.023. PubMed DOI

Kang G., Ma H., Liu G., Han Q., Li C., Guo T. Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat. Mol. Genet. Genom. 2013;288:591–599. doi: 10.1007/s00438-013-0773-5. PubMed DOI

Yin X., Nishimura M., Hajika M., Komatsu S. Quantitative proteomics reveals the flooding-tolerance mechanism in mutant and abscisic acid-treated soybean. J. Proteome Res. 2016;15:2008–2025. doi: 10.1021/acs.jproteome.6b00196. PubMed DOI

Huh S.U., Kim K.-J., Paek K.-H. Capsicum annuum basic transcription factor 3 (CaBtf3) regulates transcription of pathogenesis-related genes during hypersensitive response upon Tobacco mosaic virus infection. Biochem. Biophys. Res. Commun. 2012;417:910–917. doi: 10.1016/j.bbrc.2011.12.074. PubMed DOI

Kaido M., Inoue Y., Takeda Y., Sugiyama K., Takeda A., Mori M., Tamai A., Meshi T., Okuno T., Mise K. Downregulation of the NbNACa1 gene encoding a movement-protein-interacting protein reduces cell-to-cell movement of Brome mosaic virus in Nicotiana benthamiana. Mol. Plant-Microbe Interactions. 2007;20:671–681. doi: 10.1094/MPMI-20-6-0671. PubMed DOI

Reňák D., Dupľáková N., Honys D. Wide-scale screening of T-DNA lines for transcription factor genes affecting male gametophyte development in Arabidopsis. Sex. Plant Reprod. 2011;25:39–60. doi: 10.1007/s00497-011-0178-8. PubMed DOI

Boavida L.C., McCormick S. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J. 2007;52:570–582. doi: 10.1111/j.1365-313X.2007.03248.x. PubMed DOI

Qin Y., Leydon A.R., Manziello A., Pandey R., Mount D., Denic S., Vasic B., Johnson M., Palanivelu R. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet. 2009;5:e1000621. doi: 10.1371/journal.pgen.1000621. PubMed DOI PMC

Regan S.M., Moffatt B.A. Cytochemical analysis of pollen development in wild-type Arabidopsis and a male sterile mutant. Plant. Cell. 1990;2:877–889. doi: 10.2307/3869324. PubMed DOI PMC

Hafidh S., Potěšil D., Fila J., Čapková V., Zdráhal Z., Honys D. Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biol. 2016;17:81. doi: 10.1186/s13059-016-0928-x. PubMed DOI PMC

Apel K., Bohlmann H. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol. Biol. 1995;29:637–646. PubMed

Twell D., Yamaguchi J., McCormick S. Pollen-specific gene expression in transgenic plants: Coordinate regulation of two different tomato gene promoters during microsporogenesis. Development. 1990;109:705–713. PubMed

Steffen J.G., Kang I.-H., Macfarlane J., Drews G.N. Identification of genes expressed in the Arabidopsis female gametophyte. Plant J. 2007;51:281–292. doi: 10.1111/j.1365-313X.2007.03137.x. PubMed DOI

Nakabayashi K., Okamoto M., Koshiba T., Kamiya Y., Nambara E. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: Epigenetic and genetic regulation of transcription in seed. Plant J. 2005;41:697–709. doi: 10.1111/j.1365-313X.2005.02337.x. PubMed DOI

Schmid M., Davison T.S., Henz S.R., Pape U.J., Demar M., Vingron M., Schölkopf B., Weigel D., Lohmann J.U. A gene expression map of Arabidopsis thaliana development. Nat. Genet. 2005;37:501–506. doi: 10.1038/ng1543. PubMed DOI

Cardarelli M., Cecchetti V. Auxin polar transport in stamen formation and development: How many actors? Front. Plant Sci. 2014;5:333. doi: 10.3389/fpls.2014.00333. PubMed DOI PMC

Supek F., Bosnjak M., Skunca N., Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6:e21800. doi: 10.1371/journal.pone.0021800. PubMed DOI PMC

Winter D., Vinegar B., Nahal H., Ammar R., Wilson G., Provart N.J. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE. 2007;2:e718. doi: 10.1371/journal.pone.0000718. PubMed DOI PMC

Tsukaya H., Byrne M.E., Horiguchi G., Sugiyama M., Van Lijsebettens M., Lenhard M. How do ‘housekeeping’ genes control organogenesis?—unexpected new findings on the role of housekeeping genes in cell and organ differentiation. J. Plant Res. 2012;126:3–15. doi: 10.1007/s10265-012-0518-2. PubMed DOI

Riechmann J.L. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res. 1996;24:3134–3141. doi: 10.1093/nar/24.16.3134. PubMed DOI PMC

Running M.P., Fletcher J.C., Meyerowitz E.M. The WIGGUM gene is required for proper regulation of floral meristem size in Arabidopsis. Development. 1998;125:2545–2553. PubMed

McKim S.M., Routier-Kierzkowska A.-L., Monniaux M., Kierzkowski D., Pieper B., Smith R.S., Tsiantis M., Hay A.S. Seasonal regulation of petal number. Plant Physiol. 2017;175:886–903. doi: 10.1104/pp.17.00563. PubMed DOI PMC

Pelaz S., Ditta G.S., Baumann E., Wisman E., Yanofsky M.F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature. 2000;405:200–203. doi: 10.1038/35012103. PubMed DOI

Yotov W.V., St-Arnaud R. Differential splicing-in of a proline-rich exon converts alphaNAC into a muscle-specific transcription factor. Genes Dev. 1996;10:1763–1772. doi: 10.1101/gad.10.14.1763. PubMed DOI

Zheng X.M., Black D., Chambon P., Egly J.M. Sequencing and expression of complementary DNA for the general transcription factor BTF3. Nature. 1990;344:556–559. doi: 10.1038/344556a0. PubMed DOI

Liu Y., Hu Y., Li X., Niu L., Teng M. The crystal structure of the human nascent polypeptide-associated complex domain reveals a nucleic acid-binding region on the NACA subunit. Biochemistry. 2010;49:2890–2896. doi: 10.1021/bi902050p. PubMed DOI

Miller D.D., Scordilis S.P., Hepler P.K. Identification and localization of three classes of myosins in pollen tubes of Lilium longiflorum and Nicotiana alata. J. Cell Sci. 1995;108:2549–2563. PubMed

Honys D., Reňák D., Feciková J., Jedelský P., Nebesářová J., Dobrev P., Čapková V. Cytoskeleton-associated large RNP complexes in tobacco male gametophyte (EPPs) are associated with ribosomes and are involved in protein synthesis, processing, and localization. J. Proteome Res. 2009;8:2015–2031. doi: 10.1021/pr8009897. PubMed DOI

Stinson J.R., Eisenberg A.J., Willing R.P., Pe M.E., Hanson D.D., Mascarenhas J.P., Anderson J.A., Ashworth E.N. Genes expressed in the male gametophyte of flowering plants and their isolation. Plant Physiol. 1987;83:442–447. doi: 10.1104/pp.83.2.442. PubMed DOI PMC

Hafidh S., Potěšil D., Müller K., Fíla J., Michailidis C., Herrmannová A., Feciková J., Ischebeck T., Valášek L.S., Zdráhal Z., et al. Dynamics of the pollen sequestrome defined by subcellular coupled omics. Plant Physiol. 2018;178:258–282. doi: 10.1104/pp.18.00648. PubMed DOI PMC

Adamczyk B.J., Fernandez D.E. MIKC*MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol. 2009;149:1713–1723. doi: 10.1104/pp.109.135806. PubMed DOI PMC

Ge Z., Bergonci T., Zhao Y., Zou Y., Du S., Liu M.-C., Luo X., Ruan H., García-Valencia L.E., Zhong S., et al. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science. 2017;358:1596–1600. doi: 10.1126/science.aao3642. PubMed DOI PMC

Rã¶ckel N., Wolf S., Kost B., Rausch T., Greiner S., Röckel N. Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J. 2008;53:133–143. doi: 10.1111/j.1365-313X.2007.03325.x. PubMed DOI

Brownfield L., Hafidh S., Borg M., Sidorova A., Mori T., Twell D. A plant germline-specific integrator of sperm specification and cell cycle progression. PLoS Genet. 2009;5:e1000430. doi: 10.1371/journal.pgen.1000430. PubMed DOI PMC

Takahashi T., Mori T., Ueda K., Yamada L., Nagahara S., Higashiyama T., Sawada H., Igawa T. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants. Development. 2018;145:dev170076. doi: 10.1242/dev.170076. PubMed DOI

Maruyama D., Sugiyama T., Endo T., Nishikawa S.-I. Multiple BiP Genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness. Plant Cell Physiol. 2014;55:801–810. doi: 10.1093/pcp/pcu018. PubMed DOI

Sarkar N.K., Kim Y.-K., Grover A. Rice sHsp genes: Genomic organization and expression profiling under stress and development. BMC Genom. 2009;10:393. doi: 10.1186/1471-2164-10-393. PubMed DOI PMC

Wehmeyer N., Klann E.M., Hall B., Bennett A.B. Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol. 1996;112:747–757. doi: 10.1104/pp.112.2.747. PubMed DOI PMC

Xu Y.-H., Liu R., Yan L., Liu Z.-Q., Jiang S.-C., Shen Y.-Y., Wang X.-F., Zhang D.-P. Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. J. Exp. Bot. 2011;63:1095–1106. doi: 10.1093/jxb/err315. PubMed DOI PMC

Varotto C., Pesaresi P., Meurer J., Oelmüller R., Steiner-Lange S., Salamini F., Leister D. Disruption of the Arabidopsis photosystem I gene psaE1 affects photosynthesis and impairs growth. Plant J. 2000;22:115–124. doi: 10.1046/j.1365-313x.2000.00717.x. PubMed DOI

Jaiswal H., Conz C., Otto H., Wölfle T., Fitzke E., Mayer M.P., Rospert S. The chaperone network connected to human ribosome-associated complex. Mol. Cell. Boil. 2011;31:1160–1173. doi: 10.1128/MCB.00986-10. PubMed DOI PMC

Verma A.K., Diwan D., Raut S., Dobriyal N., Brown R.E., Gowda V., Hines J.K., Sahi C. Evolutionary conservation and emerging functional diversity of the cytosolic Hsp70:J protein chaperone network of Arabidopsis thaliana. G3: Genes|Genomes|Genetics. 2017;7:1941–1954. doi: 10.1534/g3.117.042291. PubMed DOI PMC

Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Weigel D., Glazebrook J. Arabidopsis: A Laboratory Manual. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY, USA: 2002.

Ogden R.C., Adams D.A. Electrophoresis in agarose and acrylamide gels. Methods Enzymol. 1987;152:61–87. PubMed

Witham F.H., Blaydes D.F., Devlin R.M. Experiments in Plant Physiology. Van Nostrand Reinhold Co.; New York, NY, USA: 1971. Experiment 15: Chlorophyll absorption spectrum and quantitative determinations; p. 245.

Mori T., Kuroiwa H., Higashiyama T., Kuroiwa T. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nature. 2005;8:64–71. doi: 10.1038/ncb1345. PubMed DOI

Shimada T.L., Shimada T., Hara-Nishimura I. A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J. 2010;61:519–528. doi: 10.1111/j.1365-313X.2009.04060.x. PubMed DOI

Karimi M., Inzé D., Depicker A. GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 2002;7:193–195. doi: 10.1016/S1360-1385(02)02251-3. PubMed DOI

Clough S.J., Bent A. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI

Hu C.-Y., Chee P., Chesney R., Zhou J., Miller P., O’Brien W. Intrinsic GUS-like activities in seed plants. Plant Cell Rep. 1990;9:1–5. doi: 10.1007/BF00232123. PubMed DOI

Andrews S. FastQC. A quality control tool for high throughput sequence data. [(accessed on 6 December 2019)];2010 Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17:10. doi: 10.14806/ej.17.1.200. DOI

Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2012;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Liao Y., Smyth G.K., Shi W. The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41:e108. doi: 10.1093/nar/gkt214. PubMed DOI PMC

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:002832. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC

Fíla J., Čapková V., Feciková J., Honys D. Impact of homogenization and protein extraction conditions on the obtained tobacco pollen proteomic patterns. Biol. Plant. 2011;55:499–506. doi: 10.1007/s10535-011-0116-5. DOI

Wiśniewski J.R., Ostasiewicz P., Mann M. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J. Proteome Res. 2011;10:3040–3049. doi: 10.1021/pr200019m. PubMed DOI

Stejskal K., Potěšil D., Zdráhal Z. Suppression of peptide sample losses in autosampler vials. J. Proteome Res. 2013;12:3057–3062. doi: 10.1021/pr400183v. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Regulatory dynamics of gene expression in the developing male gametophyte of Arabidopsis

. 2023 Sep ; 36 (3) : 213-241. [epub] 20221025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...