Core promoterome of barley embryo

. 2024 Dec ; 23 () : 264-277. [epub] 20231205

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38173877

Grantová podpora
MC_UP_1102/1 Medical Research Council - United Kingdom

Odkazy

PubMed 38173877
PubMed Central PMC10762323
DOI 10.1016/j.csbj.2023.12.003
PII: S2001-0370(23)00479-8
Knihovny.cz E-zdroje

Precise localization and dissection of gene promoters are key to understanding transcriptional gene regulation and to successful bioengineering applications. The core RNA polymerase II initiation machinery is highly conserved among eukaryotes, leading to a general expectation of equivalent underlying mechanisms. Still, less is known about promoters in the plant kingdom. In this study, we employed cap analysis of gene expression (CAGE) at three embryonic developmental stages in barley to accurately map, annotate, and quantify transcription initiation events. Unsupervised discovery of de novo sequence clusters grouped promoters based on characteristic initiator and position-specific core-promoter motifs. This grouping was complemented by the annotation of transcription factor binding site (TFBS) motifs. Integration with genome-wide epigenomic data sets and gene ontology (GO) enrichment analysis further delineated the chromatin environments and functional roles of genes associated with distinct promoter categories. The TATA-box presence governs all features explored, supporting the general model of two separate genomic regulatory environments. We describe the extent and implications of alternative transcription initiation events, including those that are specific to developmental stages, which can affect the protein sequence or the presence of regions that regulate translation. The generated promoterome dataset provides a valuable genomic resource for enhancing the functional annotation of the barley genome. It also offers insights into the transcriptional regulation of individual genes and presents opportunities for the informed manipulation of promoter architecture, with the aim of enhancing traits of agronomic importance.

Zobrazit více v PubMed

Burley S.K., Roeder R.G. Biochemistry and structural biology of transcription factor IID (TFIID) Annu Rev Biochem. 1996;65:769–799. PubMed

Bergman D.T., Jones T.R., Liu V., Ray J., Jagoda E., Siraj L., et al. Compatibility rules of human enhancer and promoter sequences. Nature. 2022;607:176–184. PubMed PMC

Martinez-Ara M., Comoglio F., van Arensbergen J., van Steensel B. Systematic analysis of intrinsic enhancer-promoter compatibility in the mouse genome. Mol Cell. 2022;82:2519–2531.e6. PubMed PMC

Neumayr C., Haberle V., Serebreni L., Karner K., Hendy O., Boija A., et al. Differential cofactor dependencies define distinct types of human enhancers. Nature. 2022;606:406–413. PubMed PMC

Haberle V., Lenhard B. Promoter architectures and developmental gene regulation. Semin Cell Dev Biol. 2016;57:11–23. PubMed

Vo Ngoc L., Wang Y.-L., Kassavetis G.A., Kadonaga J.T. The punctilious RNA polymerase II core promoter. Genes Dev. 2017;31:1289–1301. PubMed PMC

Smale S.T., Baltimore D. The “initiator” as a transcription control element. Cell. 1989:103–113. doi: 10.1016/0092-8674(89)90176-1. PubMed DOI

Yamamoto Y.Y., Ichida H., Matsui M., Obokata J., Sakurai T., Satou M., et al. Identification of plant promoter constituents by analysis of local distribution of short sequences. BMC Genom. 2007;8:67. PubMed PMC

Murray A., Mendieta J.P., Vollmers C., Schmitz R.J. Simple and accurate transcriptional start site identification using Smar2C2 and examination of conserved promoter features. Plant J. 2022;112:583–596. PubMed PMC

Bernard V., Brunaud V., Lecharny A. TC-motifs at the TATA-box expected position in plant genes: a novel class of motifs involved in the transcription regulation. BMC Genom. 2010;11 PubMed PMC

Cordon-Obras C., Gomez-Liñan C., Torres-Rusillo S., Vidal-Cobo I., Lopez-Farfan D., Barroso-Del Jesus A., et al. Identification of sequence-specific promoters driving polycistronic transcription initiation by RNA polymerase II in trypanosomes. Cell Rep. 2022;38 PubMed

Marbach-Bar N., Bahat A., Ashkenazi S., Golan-Mashiach M., Haimov O., Wu S.-Y., et al. DTIE, a novel core promoter element that directs start site selection in TATA-less genes. Nucleic Acids Res. 2016;44:1080–1094. PubMed PMC

Danks G.B., Navratilova P., Lenhard B., Thompson E.M. Distinct core promoter codes drive transcription initiation at key developmental transitions in a marine chordate. BMC Genom. 2018;19 PubMed PMC

Shao W., Alcantara S.G.-M., Zeitlinger J. Reporter-ChIP-nexus reveals strong contribution of the Drosophila initiator sequence to RNA polymerase pausing. eLife. 2019 doi: 10.7554/elife.41461. PubMed DOI PMC

Vo Ngoc L., Cassidy C.J., Huang C.Y., Duttke S.H.C., Kadonaga J.T. The human initiator is a distinct and abundant element that is precisely positioned in focused core promoters. Genes Dev. 2017;31:6–11. PubMed PMC

Menand B., Desnos T., Nussaume L., Berger F., Bouchez D., Meyer C., et al. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA. 2002;99:6422–6427. PubMed PMC

Cianfrocco M.A., Kassavetis G.A., Grob P., Fang J., Juven-Gershon T., Kadonaga J.T., et al. Human TFIID Binds to Core Promoter DNA in a Reorganized Structural State. Cell. 2013;152:120–131. PubMed PMC

Carninci P., Sandelin A., Lenhard B., Katayama S., Shimokawa K., Ponjavic J., et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet. 2006;38:626–635. PubMed

Deal R.B., Henikoff S. Histone variants and modifications in plant gene regulation. Curr Opin Plant Biol. 2011:116–122. doi: 10.1016/j.pbi.2010.11.005. PubMed DOI PMC

Vermeulen M., Mulder K.W., Denissov S., Pijnappel W.W.M.P., van Schaik F.M.A., Varier R.A., et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell. 2007;131:58–69. PubMed

Haberle V., Li N., Hadzhiev Y., Plessy C., Previti C., Nepal C., et al. Two independent transcription initiation codes overlap on vertebrate core promoters. Nature. 2014;507:381–385. PubMed PMC

Mejía-Guerra M.K., Li W., Galeano N.F., Vidal M., Gray J., Doseff A.I., et al. Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites. Plant Cell. 2015;27:3309–3320. PubMed PMC

Shiraki T., Kondo S., Katayama S., Waki K., Kasukawa T., Kawaji H., et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci USA. 2003;100:15776–15781. PubMed PMC

Yamamoto Y.Y., Yoshitsugu T., Sakurai T., Seki M., Shinozaki K., Obokata J. Heterogeneity of Arabidopsis core promoters revealed by high-density TSS analysis. Plant J. 2009;60:350–362. PubMed

Core L.J., Waterfall J.J., Lis J.T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science. 2008;322:1845–1848. PubMed PMC

Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., et al. The transcriptional landscape of the mammalian genome. Science. 2005;309:1559–1563. PubMed

FANTOM Consortium and the RIKEN PMI and CLST (DGT), Forrest A.R.R., Kawaji H., Rehli M., Baillie J.K., de Hoon M.J.L., et al. A promoter-level mammalian expression atlas. Nature. 2014;507:462–470. PubMed PMC

Thieffry A., Vigh M.L., Bornholdt J., Ivanov M., Brodersen P., Sandelin A. Characterization of Promoter Bidirectionality and Antisense RNAs by Inactivation of Nuclear RNA Decay Pathways. Plant Cell. 2020;32:1845–1867. PubMed PMC

Jores T., Tonnies J., Wrightsman T., Buckler E.S., Cuperus J.T., Fields S., et al. Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. Nat Plants. 2021;7:842–855. PubMed PMC

Mascher M., Wicker T., Jenkins J., Plott C., Lux T., Koh C.S., et al. Long-read sequence assembly: a technical evaluation in barley. Plant Cell. 2021;33:1888–1906. PubMed PMC

Navrátilová P., Toegelová H., Tulpová Z., Kuo Y.-T., Stein N., Doležel J., et al. Prospects of telomere-to-telomere assembly in barley: Analysis of sequence gaps in the MorexV3 reference genome. Plant Biotechnol J. 2022;20:1373–1386. PubMed PMC

Schreiber M., Mascher M., Wright J., Padmarasu S., Himmelbach A., Heavens D., et al. A Genome Assembly of the Barley “Transformation Reference” Cultivar Golden Promise. G3. 2020;10:1823–1827. PubMed PMC

Kovacik M., Nowicka A., Pecinka A. Isolation of High Purity Tissues from Developing Barley Seeds. J Vis Exp. 2020 doi: 10.3791/61681. PubMed DOI

Yu G., Wang L.-G., He Q.-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics. 2015;31:2382–2383. PubMed

Philippe L., van den Elzen A.M.G., Watson M.J., Thoreen C.C. Global analysis of LARP1 translation targets reveals tunable and dynamic features of 5′ TOP motifs. Proc Natl Acad Sci. 2020:5319–5328. doi: 10.1073/pnas.1912864117. PubMed DOI PMC

Wimalanathan K., Lawrence-Dill C.J. Gene Ontology Meta Annotator for Plants (GOMAP). doi:10.1101/809988. PubMed PMC

Supek F., Bošnjak M., Škunca N., Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6 PubMed PMC

Neumann P., Navrátilová A., Schroeder-Reiter E., Koblížková A., Steinbauerová V., Chocholová E., et al. Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet. 2012;8 PubMed PMC

Ernst J., Kellis M. Chromatin-state discovery and genome annotation with ChromHMM. Nat Protoc. 2017;12:2478–2492. PubMed PMC

Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S.O., Wicker T., et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–433. PubMed

Kovacik M., Nowicka A., Zwyrtková J., Strejčková B., Vardanega I., Esteban E., et al. The transcriptome landscape of developing barley seeds reveals H3K27me3 dynamics in endosperm tissues. bioRxiv. 2023 doi: 10.1101/2023.07.26.550659. 2023.07.26.550659. PubMed DOI PMC

Applied Research Applied Research Press. RSEM: Accurate Transcript Quantification from RNA-Seq Data with Or Without a Reference Genome. 2015. PubMed PMC

Li B., Dewey C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 2011;12 PubMed PMC

Haberle V., Forrest A.R.R., Hayashizaki Y., Carninci P., Lenhard B. CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses. Nucleic Acids Res. 2015;43 PubMed PMC

Levine M., Tjian R. Transcription regulation and animal diversity. Nature. 2003;424:147–151. PubMed

Nikumbh S., Lenhard B. Identifying promoter sequence architectures via a chunking-based algorithm using non-negative matrix factorisation. PLoSComputBiol. 2023 doi: 10.1101/2023.03.02.530868. PubMed DOI PMC

Cavin Périer R., Junier T., Bucher P. The Eukaryotic Promoter Database EPD. Nucleic Acids Res. 1998;26:353–357. PubMed PMC

Grant C.E., Bailey T.L., Noble W.S. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27:1017–1018. PubMed PMC

Wragg J.W., Roos L., Vucenovic D., Cvetesic N., Lenhard B., Müller F. Embryonic tissue differentiation is characterized by transitions in cell cycle dynamic-associated core promoter regulation. Nucleic Acids Res. 2020;48:8374–8392. PubMed PMC

Santana-Garcia W., Castro-Mondragon J.A., Padilla-Gálvez M., Nguyen N.T.T., Elizondo-Salas A., Ksouri N., et al. RSAT 2022: regulatory sequence analysis tools. Nucleic Acids Res. 2022 doi: 10.1093/nar/gkac312. PubMed DOI PMC

Sebastian A., Contreras-Moreira B. footprintDB: a database of transcription factors with annotated cis elements and binding interfaces. Bioinformatics. 2014;30:258–265. PubMed

Xiao J., Jin R., Yu X., Shen M., Wagner J.D., Pai A., et al. Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nat Genet. 2017;49:1546–1552. PubMed

Pedersen D.S., Coppens F., Ma L., Antosch M., Marktl B., Merkle T., et al. The plant-specific family of DNA-binding proteins containing three HMG-box domains interacts with mitotic and meiotic chromosomes. N Phytol. 2011;192:577–589. PubMed

Milne L., Bayer M., Rapazote-Flores P., Mayer C.-D., Waugh R., Simpson C.G. EORNA, a barley gene and transcript abundance database. Sci Data. 2021;8 PubMed PMC

Boecker F. AHRD: Automatically annotate proteins with human readable descriptions and Gene Ontology terms. Universitäts- und Landesbibliothek Bonn. 2021. Available: https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/9344.

Rach E.A., Winter D.R., Benjamin A.M., Corcoran D.L., Ni T., Zhu J., et al. Transcription initiation patterns indicate divergent strategies for gene regulation at the chromatin level. PLoS Genet. 2011;7 PubMed PMC

Ernst J., Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods. 2012;9:215–216. PubMed PMC

Djebali S., Davis C.A., Merkel A., Dobin A., Lassmann T., Mortazavi A., et al. Landscape of transcription in human cells. Nature. 2012;489:101–108. PubMed PMC

Wicker T., Schulman A.H., Tanskanen J., Spannagl M., Twardziok S., Mascher M., et al. The repetitive landscape of the 5100 Mbp barley genome. Mob DNA. 2017;8 PubMed PMC

Ponjavic J., Lenhard B., Kai C., Kawai J., Carninci P., Hayashizaki Y., et al. Transcriptional and structural impact of TATA-initiation site spacing in mammalian core promoters. Genome Biol. 2006;7:1–18. PubMed PMC

Haberle V., Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol. 2018;19:621–637. PubMed PMC

Seizl M., Hartmann H., Hoeg F., Kurth F., Martin D.E., Söding J., et al. A Conserved GA Element in TATA-Less RNA Polymerase II Promoters. PLoS One. 2011;6 doi: 10.1371/journal.pone.0027595. PubMed DOI PMC

Voigt P., Tee W.-W., Reinberg D. A double take on bivalent promoters. Genes Dev. 2013;27:1318–1338. PubMed PMC

Kawaji H., Lizio M., Itoh M., Kanamori-Katayama M., Kaiho A., Nishiyori-Sueki H., et al. Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing. Genome Res. 2014;24:708–717. PubMed PMC

Mercer T.R., Dinger M.E., Bracken C.P., Kolle G., Szubert J.M., Korbie D.J., et al. Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome. Genome Res. 2010;20:1639–1650. PubMed PMC

Haberman N., Digby H., Faraway R., Cheung R., Jobbins A.M., Parr C., et al. Abundant capped RNAs are derived from mRNA cleavage at 3′UTR G-Quadruplexes. bioRxiv. 2023 doi: 10.1101/2023.04.27.538568. 2023.04.27.538568. DOI

Qiu C., Jin H., Vvedenskaya I., Llenas J.A., Zhao T., Malik I., et al. Universal promoter scanning by Pol II during transcription initiation in Saccharomyces cerevisiae. Genome Biol. 2020;21:1–31. PubMed PMC

Wang Y., Peng Q., Mou X., Wang X., Li H., Han T., et al. A successful hybrid deep learning model aiming at promoter identification. BMC Bioinforma. 2022;23:1–20. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...