Proteome analysis in Arabidopsis reveals shoot- and root-specific targets of cytokinin action and differential regulation of hormonal homeostasis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23209126
PubMed Central
PMC3561029
DOI
10.1104/pp.112.202853
PII: pp.112.202853
Knihovny.cz E-zdroje
- MeSH
- 2D gelová elektroforéza MeSH
- Arabidopsis účinky léků genetika metabolismus MeSH
- benzylové sloučeniny MeSH
- biologické modely MeSH
- cytokininy metabolismus farmakologie MeSH
- homeostáza účinky léků MeSH
- kinetin metabolismus farmakologie MeSH
- kořeny rostlin účinky léků genetika metabolismus MeSH
- modely genetické MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteom genetika metabolismus MeSH
- puriny MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- regulátory růstu rostlin metabolismus farmakologie MeSH
- stanovení celkové genové exprese MeSH
- výhonky rostlin účinky léků genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- benzylaminopurine MeSH Prohlížeč
- benzylové sloučeniny MeSH
- cytokininy MeSH
- kinetin MeSH
- proteiny huseníčku MeSH
- proteom MeSH
- puriny MeSH
- regulátory růstu rostlin MeSH
The plant hormones cytokinins (CKs) regulate multiple developmental and physiological processes in Arabidopsis (Arabidopsis thaliana). Responses to CKs vary in different organs and tissues (e.g. the response to CKs has been shown to be opposite in shoot and root samples). However, the tissue-specific targets of CKs and the mechanisms underlying such specificity remain largely unclear. Here, we show that the Arabidopsis proteome responds with strong tissue and time specificity to the aromatic CK 6-benzylaminopurine (BAP) and that fast posttranscriptional and/or posttranslational regulation of protein abundance is involved in the contrasting shoot and root proteome responses to BAP. We demonstrate that BAP predominantly regulates proteins involved in carbohydrate and energy metabolism in the shoot as well as protein synthesis and destination in the root. Furthermore, we found that BAP treatment affects endogenous hormonal homeostasis, again with strong tissue specificity. In the shoot, BAP up-regulates the abundance of proteins involved in abscisic acid (ABA) biosynthesis and the ABA response, whereas in the root, BAP rapidly and strongly up-regulates the majority of proteins in the ethylene biosynthetic pathway. This was further corroborated by direct measurements of hormone metabolites, showing that BAP increases ABA levels in the shoot and 1-aminocyclopropane-1-carboxylic acid, the rate-limiting precursor of ethylene biosynthesis, in the root. In support of the physiological importance of these findings, we identified the role of proteins mediating BAP-induced ethylene production, METHIONINE SYNTHASE1 and ACC OXIDASE2, in the early root growth response to BAP.
Zobrazit více v PubMed
Argueso CT, Ferreira FJ, Epple P, To JP, Hutchison CE, Schaller GE, Dangl JL, Kieber JJ. (2012) Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet 8: e1002448. PubMed PMC
Azimzadeh J, Nacry P, Christodoulidou A, Drevensek S, Camilleri C, Amiour N, Parcy F, Pastuglia M, Bouchez D. (2008) Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. Plant Cell 20: 2146–2159 PubMed PMC
Barroso C, Romero LC, Cejudo FJ, Vega JM, Gotor C. (1999) Salt-specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Mol Biol 40: 729–736 PubMed
Bédard J, Kubis S, Bimanadham S, Jarvis P. (2007) Functional similarity between the chloroplast translocon component, Tic40, and the human co-chaperone, Hsp70-interacting protein (Hip). J Biol Chem 282: 21404–21414 PubMed
Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, et al. (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391: 485–488 PubMed
Brenner WG, Ramireddy E, Heyl A, Schmulling T. (2012) Gene regulation by cytokinin in Arabidopsis. Front Plant Sci 3: 8. PubMed PMC
Brenner WG, Romanov GA, Köllmer I, Bürkle L, Schmülling T. (2005) Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J 44: 314–333 PubMed
Brenner WG, Schmulling T. (2012) Transcript profiling of cytokinin action in Arabidopsis roots and shoots discovers largely similar but also organ-specific responses. BMC Plant Biol 12: 112. PubMed PMC
Caesar K, Thamm AM, Witthöft J, Elgass K, Huppenberger P, Grefen C, Horak J, Harter K. (2011) Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum. J Exp Bot 62: 5571–5580 PubMed PMC
Cary AJ, Liu W, Howell SH. (1995) Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol 107: 1075–1082 PubMed PMC
erný M, Dyka F, Bobál’ová J, Brzobohatý B. (2011) Early cytokinin response proteins and phosphoproteins of Arabidopsis thaliana identified by proteome and phosphoproteome profiling. J Exp Bot 62: 921–937 PubMed PMC
Chae HS, Faure F, Kieber JJ. (2003) The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15: 545–559 PubMed PMC
Chen R, Binder BM, Garrett WM, Tucker ML, Chang C, Cooper B. (2011) Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene. Mol Biosyst 7: 2637–2650 PubMed
Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I. (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell 19: 284–295 PubMed
Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S. (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17: 678–682 PubMed
Desveaux D, Subramaniam R, Després C, Mess JN, Lévesque C, Fobert PR, Dangl JL, Brisson N. (2004) A “Whirly” transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev Cell 6: 229–240 PubMed
Dinneny JR, Benfey PN. (2008) Plant stem cell niches: standing the test of time. Cell 132: 553–557 PubMed
Foss EJ, Radulovic D, Shaffer SA, Ruderfer DM, Bedalov A, Goodlett DR, Kruglyak L. (2007) Genetic basis of proteome variation in yeast. Nat Genet 39: 1369–1375 PubMed
Fu H, Girod PA, Doelling JH, van Nocker S, Hochstrasser M, Finley D, Vierstra RD. (1999) Structure and functional analysis of the 26S proteasome subunits from plants. Mol Biol Rep 26: 137–146 PubMed
Fu J, Keurentjes JJ, Bouwmeester H, America T, Verstappen FW, Ward JL, Beale MH, de Vos RC, Dijkstra M, Scheltema RA, et al. (2009) System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nat Genet 41: 166–167 PubMed
Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Žižková E, et al. (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62: 2827–2840 PubMed
Ghazalpour A, Bennett B, Petyuk VA, Orozco L, Hagopian R, Mungrue IN, Farber CR, Sinsheimer J, Kang HM, Furlotte N, et al. (2011) Comparative analysis of proteome and transcriptome variation in mouse. PLoS Genet 7: e1001393. PubMed PMC
Ghelis T, Bolbach G, Clodic G, Habricot Y, Miginiac E, Sotta B, Jeannette E. (2008) Protein tyrosine kinases and protein tyrosine phosphatases are involved in abscisic acid-dependent processes in Arabidopsis seeds and suspension cells. Plant Physiol 148: 1668–1680 PubMed PMC
Hansen M, Chae HS, Kieber JJ. (2009) Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J 57: 606–614 PubMed PMC
Hejátko J, Pernisová M, Eneva T, Palme K, Brzobohatý B. (2003) The putative sensor histidine kinase CKI1 is involved in female gametophyte development in Arabidopsis. Mol Genet Genomics 269: 443–453 PubMed
Hwang I, Sheen J, Müller B. (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63: 353–380 PubMed
Ishiguro S, Watanabe Y, Ito N, Nonaka H, Takeda N, Sakai T, Kanaya H, Okada K. (2002) SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. EMBO J 21: 898–908 PubMed PMC
Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S. (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277: 45188–45194 PubMed
Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, Kamiya Y, Yamaguchi S, Sakakibara H. (2004) Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. J Biol Chem 279: 14049–14054 PubMed
Kim K, Ryu H, Cho YH, Scacchi E, Sabatini S, Hwang I. (2012) Cytokinin-facilitated proteolysis of ARABIDOPSIS RESPONSE REGULATOR 2 attenuates signaling output in two-component circuitry. Plant J 69: 934–945 PubMed
Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445: 652–655 PubMed
Kyozuka J. (2007) Control of shoot and root meristem function by cytokinin. Curr Opin Plant Biol 10: 442–446 PubMed
Marhavý P, Bielach A, Abas L, Abuzeineh A, Duclercq J, Tanaka H, Pařezová M, Petrášek J, Friml J, Kleine-Vehn J, et al. (2011) Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell 21: 796–804 PubMed
Milborrow BV. (2001) The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. J Exp Bot 52: 1145–1164 PubMed
Mok MC. (1994) Cytokinins and plant development: an overview. In DWS Mok, MC Mok, eds, Cytokinins: Chemistry, Activity, and Function. CRC Press, Boca Raton, FL, pp 155–166
Ning K, Fermin D, Nesvizhskii AI. (2012) Comparative analysis of different label-free mass spectrometry based protein abundance estimates and their correlation with RNA-Seq gene expression data. J Proteome Res 11: 2261–2271 PubMed PMC
Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, et al. (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23: 2169–2183 PubMed PMC
Pernisová M, Klíma P, Horák J, Válková M, Malbeck J, Souček P, Reichman P, Hoyerová K, Dubová J, Friml J, et al. (2009) Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc Natl Acad Sci USA 106: 3609–3614 PubMed PMC
Rashotte AM, Carson SD, To JP, Kieber JJ. (2003) Expression profiling of cytokinin action in Arabidopsis. Plant Physiol 132: 1998–2011 PubMed PMC
Reski R. (1994) Plastid genes and chloroplast biogenesis. In DWS Mok, MC Mok, eds, Cytokinins: Chemistry, Activity, and Function. CRC Press, Boca Raton, FL, pp 179–195
Růžička K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E. (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19: 2197–2212 PubMed PMC
Růžička K, Simásková M, Duclercq J, Petráek J, Zažímalová E, Simon S, Friml J, Van Montagu MC, Benková E. (2009) Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci USA 106: 4284–4289 PubMed PMC
Ryu MY, Cho SK, Kim WT. (2009) RNAi suppression of RPN12a decreases the expression of type-A ARRs, negative regulators of cytokinin signaling pathway, in Arabidopsis. Mol Cells 28: 375–382 PubMed
Sakakibara H. (2010) Cytokinin biosynthesis and metabolism. In PJ Davies, ed, Plant Hormones: Biosynthesis, Signal Transduction, Action! Ed 3. Springer, Dordrecht, The Netherlands, pp 95–114
Sakakibara H, Takei K, Hirose N. (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11: 440–448 PubMed
Saleem M, Lamkemeyer T, Schützenmeister A, Madlung J, Sakai H, Piepho HP, Nordheim A, Hochholdinger F. (2010) Specification of cortical parenchyma and stele of maize primary roots by asymmetric levels of auxin, cytokinin, and cytokinin-regulated proteins. Plant Physiol 152: 4–18 PubMed PMC
Smalle J, Kurepa J, Yang P, Babiychuk E, Kushnir S, Durski A, Vierstra RD. (2002) Cytokinin growth responses in Arabidopsis involve the 26S proteasome subunit RPN12. Plant Cell 14: 17–32 PubMed PMC
Solano R, Stepanova A, Chao Q, Ecker JR. (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12: 3703–3714 PubMed PMC
Spíchal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T. (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45: 1299–1305 PubMed
Stahl Y, Simon R. (2010) Plant primary meristems: shared functions and regulatory mechanisms. Curr Opin Plant Biol 13: 53–58 PubMed
Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S. (2006) Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. J Exp Bot 57: 2259–2266 PubMed
Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS. (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329: 533–538 PubMed PMC
Tsugita A, Kamo M. (1999) 2-D electrophoresis of plant proteins. Methods Mol Biol 112: 95–97 PubMed
Veach YK, Martin RC, Mok DW, Malbeck J, Vaková R, Mok MC. (2003) O-Glucosylation of cis-zeatin in maize: characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol 131: 1374–1380 PubMed PMC
Wareing PF, Khalifa MM, Treharne KJ. (1968) Rate-limiting processes in photosynthesis at saturating light intensities. Nature 220: 453–457 PubMed
Watanabe N, Yokota T, Takahashi N. (1982) Transfer-RNA, a possible supplier of free cytokinins, ribosyl-cis-zeatin and ribosyl-2-methylthiozeatin: quantitative comparison between free and transfer cytokinins in various tissues of the hop plant. Plant Cell Physiol 23: 479–488
Werner T, Holst K, Pörs Y, Guivarc’h A, Mustroph A, Chriqui D, Grimm B, Schmülling T. (2008) Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. J Exp Bot 59: 2659–2672 PubMed PMC
Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T. (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15: 2532–2550 PubMed PMC
Werner T, Schmülling T. (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12: 527–538 PubMed
Wulfetange K, Lomin SN, Romanov GA, Stolz A, Heyl A, Schmülling T. (2011) The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol 156: 1808–1818 PubMed PMC
Yoo HH, Kwon C, Lee MM, Chung IK. (2007) Single-stranded DNA binding factor AtWHY1 modulates telomere length homeostasis in Arabidopsis. Plant J 49: 442–451 PubMed
Zhang W, To JP, Cheng CY, Eric Schaller G, Kieber JJ. (2011) Type-A response regulators are required for proper root apical meristem function through post-transcriptional regulation of PIN auxin efflux carriers. Plant J 68: 1–10 PubMed
Cytokinins regulate spatially specific ethylene production to control root growth in Arabidopsis
Barley Root Proteome and Metabolome in Response to Cytokinin and Abiotic Stimuli
trans-Zeatin-N-glucosides have biological activity in Arabidopsis thaliana
Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks