Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, metaanalýza, přehledy
Grantová podpora
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
TE02000177
Technologická Agentura České Republiky
AF-IGA-IP-2018/014
Mendelova Univerzita v Brně
PubMed
30231521
PubMed Central
PMC6163176
DOI
10.3390/ijms19092812
PII: ijms19092812
Knihovny.cz E-zdroje
- Klíčová slova
- H2O2, growth and development, plant hormone, signalling, stress,
- MeSH
- biologický transport MeSH
- fyziologický stres MeSH
- peroxid vodíku metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin genetika metabolismus MeSH
- rostliny genetika metabolismus MeSH
- signální transdukce * MeSH
- transkriptom MeSH
- vývoj rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- přehledy MeSH
- Názvy látek
- peroxid vodíku MeSH
- regulátory růstu rostlin MeSH
Hydrogen peroxide (H₂O₂) is steadily gaining more attention in the field of molecular biology research. It is a major REDOX (reduction⁻oxidation reaction) metabolite and at high concentrations induces oxidative damage to biomolecules, which can culminate in cell death. However, at concentrations in the low nanomolar range, H₂O₂ acts as a signalling molecule and in many aspects, resembles phytohormones. Though its signalling network in plants is much less well characterized than are those of its counterparts in yeast or mammals, accumulating evidence indicates that the role of H₂O₂-mediated signalling in plant cells is possibly even more indispensable. In this review, we summarize hydrogen peroxide metabolism in plants, the sources and sinks of this compound and its transport via peroxiporins. We outline H₂O₂ perception, its direct and indirect effects and known targets in the transcriptional machinery. We focus on the role of H₂O₂ in plant growth and development and discuss the crosstalk between it and phytohormones. In addition to a literature review, we performed a meta-analysis of available transcriptomics data which provided further evidence for crosstalk between H₂O₂ and light, nutrient signalling, temperature stress, drought stress and hormonal pathways.
Brno Ph D Talent South Moravian Centre for International Mobility 602 00 Brno Czech Republic
Zobrazit více v PubMed
Möller D. Atmospheric hydrogen peroxide: Evidence for aqueous-phase formation from a historic perspective and a one-year measurement campaign. Atmos. Environ. 2009;43:5923–5936. doi: 10.1016/j.atmosenv.2009.08.013. DOI
Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014;2:53. doi: 10.3389/fenvs.2014.00053. DOI
Cheeseman J.M. Hydrogen peroxide concentrations in leaves under natural conditions. J. Exp. Bot. 2006;57:2435–2444. doi: 10.1093/jxb/erl004. PubMed DOI
Wrzaczek M., Brosché M., Kangasjärvi J. ROS signalling loops—Production, perception, regulation. Curr. Opin. Plant Biol. 2013;16:575–582. doi: 10.1016/j.pbi.2013.07.002. PubMed DOI
Foyer C.H., Bloom A.J., Queval G., Noctor G. Photorespiratory Metabolism: Genes, Mutants, Energetics and Redox Signalling. Annu. Rev. Plant Biol. 2009;60:455–484. doi: 10.1146/annurev.arplant.043008.091948. PubMed DOI
Dai X., Mashiguchi K., Chen Q., Kasahara H., Kamiya Y., Ojha S., DuBois J., Ballou D., Zhao Y. The biochemical mechanism of auxin biosynthesis by an arabidopsis YUCCA flavin-containing monooxygenase. J. Biol. Chem. 2013;288:1448–1457. doi: 10.1074/jbc.M112.424077. PubMed DOI PMC
Siddens L.K., Krueger S.K., Henderson M.C., Williams D.E. Mammalian flavin-containing monooxygenase (FMO) as a source of hydrogen peroxide. Biochem. Pharmacol. 2014;89:141–147. doi: 10.1016/j.bcp.2014.02.006. PubMed DOI PMC
Dietz K.-J., Turkan I., Krieger-Liszkay A. Redox- and Reactive Oxygen Species-Dependent Signaling into and out of the Photosynthesizing Chloroplast. Plant Physiol. 2016;171:1541–1550. doi: 10.1104/pp.16.00375. PubMed DOI PMC
Demidchik V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ. Exp. Bot. 2015;109:212–228. doi: 10.1016/j.envexpbot.2014.06.021. DOI
Khorobrykh S.A., Karonen M., Tyystjärvi E. Experimental evidence suggesting that H2O2 is produced within the thylakoid membrane in a reaction between plastoquinol and singlet oxygen. FEBS Lett. 2015;589:779–786. doi: 10.1016/j.febslet.2015.02.011. PubMed DOI
Huang S., Van Aken O., Schwarzländer M., Belt K., Millar A.H. The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants. Plant Physiol. 2016;171:1551–1559. doi: 10.1104/pp.16.00166. PubMed DOI PMC
Mignolet-Spruyt L., Xu E., Idänheimo N., Hoeberichts F.A., Mühlenbock P., Brosché M., Van Breusegem F., Kangasjärvi J. Spreading the news: Subcellular and organellar reactive oxygen species production and signalling. J. Exp. Bot. 2016;67:3831–3844. doi: 10.1093/jxb/erw080. PubMed DOI
Møller I.M. Plant Mitochondria and Oxidative Stress: Electron Transport, NADPH Turnover and Metabolism of Reactive Oxygen Species. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001;52:561–591. doi: 10.1146/annurev.arplant.52.1.561. PubMed DOI
Gill S.S., Anjum N.A., Gill R., Yadav S., Hasanuzzaman M., Fujita M., Mishra P., Sabat S.C., Tuteja N. Superoxide dismutase—Mentor of abiotic stress tolerance in crop plants. Environ. Sci. Pollut. Res. 2015;22:10375–10394. doi: 10.1007/s11356-015-4532-5. PubMed DOI
Alscher R.G., Erturk N., Heath L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002;53:1331–1341. doi: 10.1093/jexbot/53.372.1331. PubMed DOI
The UniProt Consortium UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158–D169. doi: 10.1093/nar/gkw1099. PubMed DOI PMC
Tanz S.K., Castleden I., Hooper C.M., Vacher M., Small I., Millar H.A. SUBA3: A database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res. 2012;41:D1185–D1191. doi: 10.1093/nar/gks1151. PubMed DOI PMC
Krishnakumar V., Hanlon M.R., Contrino S., Ferlanti E.S., Karamycheva S., Kim M., Rosen B.D., Cheng C.-Y., Moreira W., Mock S.A., et al. Araport: The Arabidopsis Information Portal. Nucleic Acids Res. 2015;43:D1003–D1009. doi: 10.1093/nar/gku1200. PubMed DOI PMC
Marino D., Dunand C., Puppo A., Pauly N. A burst of plant NADPH oxidases. Trends Plant Sci. 2012;17:9–15. doi: 10.1016/j.tplants.2011.10.001. PubMed DOI
Suzuki N., Miller G., Morales J., Shulaev V., Torres M.A., Mittler R. Respiratory burst oxidases: The engines of ROS signaling. Curr. Opin. Plant Biol. 2011;14:691–699. doi: 10.1016/j.pbi.2011.07.014. PubMed DOI
Swanson S., Gilroy S. ROS in plant development. Physiol. Plant. 2010;138:384–392. doi: 10.1111/j.1399-3054.2009.01313.x. PubMed DOI
Tripathy B.C., Oelmüller R. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 2012;7:1621–1633. doi: 10.4161/psb.22455. PubMed DOI PMC
Sagi M., Fluhr R. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 2006;141:336–340. doi: 10.1104/pp.106.078089. PubMed DOI PMC
Yun B.-W., Feechan A., Yin M., Saidi N.B.B., Le Bihan T., Yu M., Moore J.W., Kang J.-G., Kwon E., Spoel S.H., et al. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature. 2011;478:264–268. doi: 10.1038/nature10427. PubMed DOI
Qu Y., Yan M., Zhang Q. Functional regulation of plant NADPH oxidase and its role in signaling. Plant Signal. Behav. 2017;12:e1356970. doi: 10.1080/15592324.2017.1356970. PubMed DOI PMC
Yoda H., Yamaguchi Y., Sano H. Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiol. 2003;132:1973–1981. doi: 10.1104/pp.103.024737. PubMed DOI PMC
Tavladoraki P., Cona A., Angelini R. Copper-Containing Amine Oxidases and FAD-Dependent Polyamine Oxidases Are Key Players in Plant Tissue Differentiation and Organ Development. Front. Plant Sci. 2016;7:824. doi: 10.3389/fpls.2016.00824. PubMed DOI PMC
Fincato P., Moschou P.N., Spedaletti V., Tavazza R., Angelini R., Federico R., Roubelakis-Angelakis K.A., Tavladoraki P. Functional diversity inside the Arabidopsis polyamine oxidase gene family. J. Exp. Bot. 2011;62:1155–1168. doi: 10.1093/jxb/erq341. PubMed DOI
Gupta K., Sengupta A., Chakraborty M., Gupta B. Hydrogen Peroxide and Polyamines Act as Double Edged Swords in Plant Abiotic Stress Responses. Front. Plant Sci. 2016;7:1343. doi: 10.3389/fpls.2016.01343. PubMed DOI PMC
Černý M., Kuklová A., Hoehenwarter W., Fragner L., Novák O., Rotková G., Jedelský P.L., Žáková K., Šmehilová M., Strnad M., et al. Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. J. Exp. Bot. 2013;64:4193–4206. doi: 10.1093/jxb/ert227. PubMed DOI PMC
Hesberg C., Hänsch R., Mendel R.R., Bittner F. Tandem Orientation of Duplicated Xanthine Dehydrogenase Genes from Arabidopsis thaliana: Differential gene expression and enzyme activities. J. Biol. Chem. 2004;279:13547–13554. doi: 10.1074/jbc.M312929200. PubMed DOI
Hu J., Baker A., Bartel B., Linka N., Mullen R.T., Reumann S., Zolman B.K. Plant Peroxisomes: Biogenesis and Function. Plant Cell. 2012;24:2279–2303. doi: 10.1105/tpc.112.096586. PubMed DOI PMC
Bauwe H., Hagemann M., Fernie A.R. Photorespiration: Players, partners and origin. Trends Plant Sci. 2010;15:330–336. doi: 10.1016/j.tplants.2010.03.006. PubMed DOI
Maurino V.G., Peterhansel C. Photorespiration: Current status and approaches for metabolic engineering. Curr. Opin. Plant Biol. 2010;13:248–255. doi: 10.1016/j.pbi.2010.01.006. PubMed DOI
Foyer C.H., Noctor G. Stress-triggered redox signalling: What’s in pROSpect? Plant Cell Environ. 2016;39:951–964. doi: 10.1111/pce.12621. PubMed DOI
Costa A., Drago I., Behera S., Zottini M., Pizzo P., Schroeder J.I., Pozzan T., Schiavo F.L. H2O2 in plant peroxisomes: An in vivo analysis uncovers a Ca2+-dependent scavenging system. Plant J. 2010;62:760–772. doi: 10.1111/j.1365-313X.2010.04190.x. PubMed DOI PMC
del Río L.A. ROS and RNS in plant physiology: An overview. J. Exp. Bot. 2015;66:2827–2837. doi: 10.1093/jxb/erv099. PubMed DOI
Petrov V.D., Van Breusegem F. Hydrogen peroxide—A central hub for information flow in plant cells. AoB Plants. 2012;2012:pls014. doi: 10.1093/aobpla/pls014. PubMed DOI PMC
Ksas B., Légeret B., Ferretti U., Chevalier A., Pospíšil P., Alric J., Havaux M. The plastoquinone pool outside the thylakoid membrane serves in plant photoprotection as a reservoir of singlet oxygen scavengers. Plant Cell Environ. 2018 doi: 10.1111/pce.13202. PubMed DOI
Khorobrykh S., Tyystjärvi E. Plastoquinol generates and scavenges reactive oxygen species in organic solvent: Potential relevance for thylakoids. Biochim. Biophys. Acta-Bioenerg. 2018;1859:1119–1131. doi: 10.1016/j.bbabio.2018.07.003. PubMed DOI
Popov V., Simonian R., Skulachev V., Starkov A. Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria. FEBS Lett. 1997;415:87–90. doi: 10.1016/S0014-5793(97)01099-5. PubMed DOI
Wiciarz M., Gubernator B., Kruk J., Niewiadomska E. Enhanced chloroplastic generation of H2O2 in stress-resistant Thellungiella salsuginea in comparison to Arabidopsis thaliana. Physiol. Plant. 2015;153:467–476. doi: 10.1111/ppl.12248. PubMed DOI PMC
Alfonso-Prieto M., Biarnés X., Vidossich P., Rovira C. The molecular mechanism of the catalase reaction. J. Am. Chem. Soc. 2009;131:11751–11761. doi: 10.1021/ja9018572. PubMed DOI
Ray M., Mishra P., Das P., Sabat S.C. Expression and purification of soluble bio-active rice plant catalase-A from recombinant Escherichia coli. J. Biotechnol. 2012;157:12–19. doi: 10.1016/j.jbiotec.2011.09.022. PubMed DOI
Kitajima S., Kitamura M., Koja N. Triple mutation of Cys26, Trp35 and Cys126 in stromal ascorbate peroxidase confers H2O2 tolerance comparable to that of the cytosolic isoform. Biochem. Biophys. Res. Commun. 2008;372:918–923. doi: 10.1016/j.bbrc.2008.05.160. PubMed DOI
Černý M., Doubnerová V., Müller K., Ryšlavá H. Characterization of phosphoenolpyruvate carboxylase from mature maize seeds: Properties of phosphorylated and dephosphorylated forms. Biochimie. 2010;92:1362–1370. doi: 10.1016/j.biochi.2010.06.019. PubMed DOI
Mhamdi A., Queval G., Chaouch S., Vanderauwera S., Van Breusegem F., Noctor G. Catalase function in plants: A focus on Arabidopsis mutants as stress-mimic models. J. Exp. Bot. 2010;61:4197–4220. doi: 10.1093/jxb/erq282. PubMed DOI
Mhamdi A., Noctor G., Baker A. Plant catalases: Peroxisomal redox guardians. Arch. Biochem. Biophys. 2012;525:181–194. doi: 10.1016/j.abb.2012.04.015. PubMed DOI
Foyer C.H., Noctor G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 2011;155:2–18. doi: 10.1104/pp.110.167569. PubMed DOI PMC
Caverzan A., Passaia G., Rosa S.B., Ribeiro C.W., Lazzarotto F., Margis-Pinheiro M. Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 2012;35:1011–1019. doi: 10.1590/S1415-47572012000600016. PubMed DOI PMC
Davletova S., Rizhsky L., Liang H., Shengqiang Z., Oliver D.J., Coutu J., Shulaev V., Schlauch K., Mittler R. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell. 2005;17:268–281. doi: 10.1105/tpc.104.026971. PubMed DOI PMC
Fomenko D.E., Koc A., Agisheva N., Jacobsen M., Kaya A., Malinouski M., Rutherford J.C., Siu K.-L., Jin D.-Y., Winge D.R., et al. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proc. Natl. Acad. Sci. USA. 2011;108:2729–2734. doi: 10.1073/pnas.1010721108. PubMed DOI PMC
Liebthal M., Maynard D., Dietz K.-J. Peroxiredoxins and Redox Signaling in Plants. Antioxid. Redox Signal. 2018;28:609–624. doi: 10.1089/ars.2017.7164. PubMed DOI PMC
Shigeto J., Tsutsumi Y. Diverse functions and reactions of class III peroxidases. New Phytol. 2016;209:1395–1402. doi: 10.1111/nph.13738. PubMed DOI
Podgórska A., Burian M., Szal B. Extra-Cellular But Extra-Ordinarily Important for Cells: Apoplastic Reactive Oxygen Species Metabolism. Front. Plant Sci. 2017;8:1353. doi: 10.3389/fpls.2017.01353. PubMed DOI PMC
O’Brien J.A., Daudi A., Finch P., Butt V.S., Whitelegge J.P., Souda P., Ausubel F.M., Bolwell G.P. A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiol. 2012;158:2013–2027. doi: 10.1104/pp.111.190140. PubMed DOI PMC
Jovanović S.V., Kukavica B., Vidović M., Morina F., Menckhoff L. Antioxidants and Antioxidant Enzymes in Higher Plants. Springer International Publishing; Cham, Switzerland: 2018. Class III Peroxidases: Functions, Localization and Redox Regulation of Isoenzymes; pp. 269–300.
Tewari R.K., Singh P.K., Watanabe M. The spatial patterns of oxidative stress indicators co-locate with early signs of natural senescence in maize leaves. Acta Physiol. Plant. 2013;35:949–957. doi: 10.1007/s11738-012-1138-0. DOI
Winterbourn C.C. Biological Production, Detection and Fate of Hydrogen Peroxide. Antioxid. Redox Signal. 2017;29:541–551. doi: 10.1089/ars.2017.7425. PubMed DOI
Stöcker S., Van Laer K., Mijuskovic A., Dick T.P. The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs. Antioxid. Redox Signal. 2018;28:558–573. doi: 10.1089/ars.2017.7162. PubMed DOI
Henzler T., Steudle E. Transport and metabolic degradation of hydrogen peroxide in Chara corallina: Model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J. Exp. Bot. 2000;51:2053–2066. doi: 10.1093/jexbot/51.353.2053. PubMed DOI
Abascal F., Irisarri I., Zardoya R. Diversity and evolution of membrane intrinsic proteins. Biochim. Biophys. Acta-Gen. Subj. 2014;1840:1468–1481. doi: 10.1016/j.bbagen.2013.12.001. PubMed DOI
Maurel C., Boursiac Y., Luu D.-T., Santoni V., Shahzad Z., Verdoucq L. Aquaporins in Plants. Physiol. Rev. 2015;95:1321–1358. doi: 10.1152/physrev.00008.2015. PubMed DOI
Hooijmaijers C., Rhee J.Y., Kwak K.J., Chung G.C., Horie T., Katsuhara M., Kang H. Hydrogen peroxide permeability of plasma membrane aquaporins of Arabidopsis thaliana. J. Plant Res. 2012;125:147–153. doi: 10.1007/s10265-011-0413-2. PubMed DOI
Bienert G.P., Heinen R.B., Berny M.C., Chaumont F. Maize plasma membrane aquaporin ZmPIP2;5 but not ZmPIP1;2, facilitates transmembrane diffusion of hydrogen peroxide. Biochim. Biophys. Acta-Biomembr. 2014;1838:216–222. doi: 10.1016/j.bbamem.2013.08.011. PubMed DOI
Katsuhara M., Sasano S., Horie T., Matsumoto T., Rhee J., Shibasaka M. Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnol. 2014;31:213–219. doi: 10.5511/plantbiotechnology.14.0421a. DOI
Bienert G.P., Møller A.L.B., Kristiansen K.A., Schulz A., Møller I.M., Schjoerring J.K., Jahn T.P. Specific Aquaporins Facilitate the Diffusion of Hydrogen Peroxide across Membranes. J. Biol. Chem. 2007;282:1183–1192. doi: 10.1074/jbc.M603761200. PubMed DOI
Dynowski M., Schaaf G., Loque D., Moran O., Ludewig U. Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochem. J. 2008;414:53–61. doi: 10.1042/BJ20080287. PubMed DOI
Tian S., Wang X., Li P., Wang H., Ji H., Xie J., Qiu Q., Shen D., Dong H. Plant Aquaporin AtPIP1;4 Links Apoplastic H2O2 Induction to Disease Immunity Pathways. Plant Physiol. 2016;171:1635–1650. doi: 10.1104/pp.15.01237. PubMed DOI PMC
Azad A.K., Yoshikawa N., Ishikawa T., Sawa Y., Shibata H. Substitution of a single amino acid residue in the aromatic/arginine selectivity filter alters the transport profiles of tonoplast aquaporin homologs. Biochim. Biophys. Acta. 2012;1818:1–11. doi: 10.1016/j.bbamem.2011.09.014. PubMed DOI
Bienert G.P., Bienert M.D., Jahn T.P., Boutry M., Chaumont F. Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J. 2011;66:306–317. doi: 10.1111/j.1365-313X.2011.04496.x. PubMed DOI
Kim Y.X., Steudle E. Gating of aquaporins by light and reactive oxygen species in leaf parenchyma cells of the midrib of Zea mays. J. Exp. Bot. 2009;60:547–556. doi: 10.1093/jxb/ern299. PubMed DOI PMC
Bienert G.P., Chaumont F. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim. Biophys. Acta. 2014;1840:1596–1604. doi: 10.1016/j.bbagen.2013.09.017. PubMed DOI
Verdoucq L., Rodrigues O., Martinière A., Luu D.T., Maurel C. Plant aquaporins on the move: Reversible phosphorylation, lateral motion and cycling. Curr. Opin. Plant Biol. 2014;22:101–107. doi: 10.1016/j.pbi.2014.09.011. PubMed DOI
Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017;11:613–619. doi: 10.1016/j.redox.2016.12.035. PubMed DOI PMC
Černý M., Skalák J., Cerna H., Brzobohatý B. Advances in purification and separation of posttranslationally modified proteins. J. Proteomics. 2013;92:2–27. doi: 10.1016/j.jprot.2013.05.040. PubMed DOI
Lee J.-W., Helmann J.D. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature. 2006;440:363–367. doi: 10.1038/nature04537. PubMed DOI
Andronis E.A., Moschou P.N., Toumi I., Roubelakis-Angelakis K.A. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana. Front. Plant Sci. 2014;5:132. doi: 10.3389/fpls.2014.00132. PubMed DOI PMC
Sabater B., Martín M. Hypothesis: Increase of the ratio singlet oxygen plus superoxide radical to hydrogen peroxide changes stress defense response to programmed leaf death. Front. Plant Sci. 2013;4:479. doi: 10.3389/fpls.2013.00479. PubMed DOI PMC
Couturier J., Chibani K., Jacquot J.-P., Rouhier N. Cysteine–based redox regulation and signaling in plants. Front. Plant Sci. 2013;4:105. doi: 10.3389/fpls.2013.00105. PubMed DOI PMC
Davies M.J. Protein oxidation and peroxidation. Biochem. J. 2016;473:805–825. doi: 10.1042/BJ20151227. PubMed DOI PMC
Marinho H.S., Real C., Cyrne L., Soares H., Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2014;2:535–562. doi: 10.1016/j.redox.2014.02.006. PubMed DOI PMC
Miao Y., Lv D., Wang P., Wang X.-C., Chen J., Miao C., Song C.-P. An Arabidopsis Glutathione Peroxidase Functions as Both a Redox Transducer and a Scavenger in Abscisic Acid and Drought Stress Responses. Plant Cell Online. 2006;18:2749–2766. doi: 10.1105/tpc.106.044230. PubMed DOI PMC
Muthuramalingam M., Matros A., Scheibe R., Mock H.-P., Dietz K.-J. The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo. Front. Plant Sci. 2013;4:54. doi: 10.3389/fpls.2013.00054. PubMed DOI PMC
Li C.-W., Lee S.-H., Chieh P.-S., Lin C.-S., Wang Y.-C., Chan M.-T. Arabidopsis Root-Abundant Cytosolic Methionine Sulfoxide Reductase B Genes MsrB7 and MsrB8 are Involved in Tolerance to Oxidative Stress. Plant Cell Physiol. 2012;53:1707–1719. doi: 10.1093/pcp/pcs114. PubMed DOI
Jacques S., Ghesquière B., De Bock P.-J., Demol H., Wahni K., Willems P., Messens J., Van Breusegem F., Gevaert K. Protein Methionine Sulfoxide Dynamics in Arabidopsis thaliana under Oxidative Stress. Mol. Cell. Proteomics. 2015;14:1217–1229. doi: 10.1074/mcp.M114.043729. PubMed DOI PMC
Hardin S.C., Larue C.T., Oh M.-H., Jain V., Huber S.C. Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis. Biochem. J. 2009;422:305–312. doi: 10.1042/BJ20090764. PubMed DOI PMC
Yi D., Alvim Kamei C.L., Cools T., Vanderauwera S., Takahashi N., Okushima Y., Eekhout T., Yoshiyama K.O., Larkin J., Van den Daele H., et al. The Arabidopsis SIAMESE-RELATED cyclin-dependent kinase inhibitors SMR5 and SMR7 regulate the DNA damage checkpoint in response to reactive oxygen species. Plant Cell. 2014;26:296–309. doi: 10.1105/tpc.113.118943. PubMed DOI PMC
Miao Y., Zentgraf U. A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. Plant J. 2010;63:179–188. doi: 10.1111/j.1365-313X.2010.04233.x. PubMed DOI
Černý M., Novák J., Habánová H., Cerna H., Brzobohatý B. Role of the proteome in phytohormonal signaling. Biochim. Biophys. Acta-Proteins Proteom. 2016;1864:1003–1015. doi: 10.1016/j.bbapap.2015.12.008. PubMed DOI
Schöffl F., Rieping M., Baumann G., Bevan M., Angermüller S. The function of plant heat shock promoter elements in the regulated expression of chimaeric genes in transgenic tobacco. Mol. Gen. Genet. 1989;217:246–253. doi: 10.1007/BF02464888. PubMed DOI
Panchuk I.I., Volkov R.A., Schöffl F. Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol. 2002;129:838–853. doi: 10.1104/pp.001362. PubMed DOI PMC
Miller G., Mittler R. Could Heat Shock Transcription Factors Function as Hydrogen Peroxide Sensors in Plants? Ann. Bot. 2006;98:279–288. doi: 10.1093/aob/mcl107. PubMed DOI PMC
Nishizawa A., Yabuta Y., Yoshida E., Maruta T., Yoshimura K., Shigeoka S. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 2006;48:535–547. doi: 10.1111/j.1365-313X.2006.02889.x. PubMed DOI
Balazadeh S., Wu A., Mueller-Roeber B. Salt-triggered expression of the ANAC092-dependent senescence regulon in Arabidopsis thaliana. Plant Signal. Behav. 2010;5:733–735. doi: 10.4161/psb.5.6.11694. PubMed DOI PMC
Wu A., Allu A.D., Garapati P., Siddiqui H., Dortay H., Zanor M.-I., Asensi-Fabado M.A., Munné-Bosch S., Antonio C., Tohge T., et al. JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell. 2012;24:482–506. doi: 10.1105/tpc.111.090894. PubMed DOI PMC
Balazadeh S., Kwasniewski M., Caldana C., Mehrnia M., Zanor M.I., Xue G.-P., Mueller-Roeber B. ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol. Plant. 2011;4:346–360. doi: 10.1093/mp/ssq080. PubMed DOI PMC
Ng S., Ivanova A., Duncan O., Law S.R., Van Aken O., De Clercq I., Wang Y., Carrie C., Xu L., Kmiec B., et al. A Membrane-Bound NAC Transcription Factor, ANAC017, Mediates Mitochondrial Retrograde Signaling in Arabidopsis. Plant Cell. 2013;25:3450–3471. doi: 10.1105/tpc.113.113985. PubMed DOI PMC
De Clercq I., Vermeirssen V., Van Aken O., Vandepoele K., Murcha M.W., Law S.R., Inzé A., Ng S., Ivanova A., Rombaut D., et al. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell. 2013;25:3472–3490. doi: 10.1105/tpc.113.117168. PubMed DOI PMC
Shaikhali J., Davoine C., Brännström K., Rouhier N., Bygdell J., Björklund S., Wingsle G. Biochemical and redox characterization of the mediator complex and its associated transcription factor GeBPL, a GLABROUS1 enhancer binding protein. Biochem. J. 2015;468:385–400. doi: 10.1042/BJ20150132. PubMed DOI
Shaikhali J., Davoine C., Björklund S., Wingsle G. Redox regulation of the MED28 and MED32 mediator subunits is important for development and senescence. Protoplasma. 2016;253:957–963. doi: 10.1007/s00709-015-0853-y. PubMed DOI
Phukan U.J., Jeena G.S., Shukla R.K. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. Front. Plant Sci. 2016;7:760. doi: 10.3389/fpls.2016.00760. PubMed DOI PMC
Besseau S., Li J., Palva E.T. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J. Exp. Bot. 2012;63:2667–2679. doi: 10.1093/jxb/err450. PubMed DOI PMC
Ding Z.J., Yan J.Y., Xu X.Y., Yu D.Q., Li G.X., Zhang S.Q., Zheng S.J. Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis. Plant J. 2014;79:13–27. doi: 10.1111/tpj.12538. PubMed DOI
Ciftci-Yilmaz S., Morsy M.R., Song L., Coutu A., Krizek B.A., Lewis M.W., Warren D., Cushman J., Connolly E.L., Mittler R. The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress. J. Biol. Chem. 2007;282:9260–9268. doi: 10.1074/jbc.M611093200. PubMed DOI
Le C.T.T., Brumbarova T., Ivanov R., Stoof C., Weber E., Mohrbacher J., Fink-Straube C., Bauer P. ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12) Interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) Linking Iron Deficiency and Oxidative Stress Responses. Plant Physiol. 2016;170:540–557. doi: 10.1104/pp.15.01589. PubMed DOI PMC
Pavet V., Olmos E., Kiddle G., Mowla S., Kumar S., Antoniw J., Alvarez M.E., Foyer C.H. Ascorbic Acid Deficiency Activates Cell Death and Disease Resistance Responses in Arabidopsis. Plant Physiol. 2005;139:1291–1303. doi: 10.1104/pp.105.067686. PubMed DOI PMC
Scrase-Field S.A.M.G., Knight M.R. Calcium: Just a chemical switch? Curr. Opin. Plant Biol. 2003;6:500–506. doi: 10.1016/S1369-5266(03)00091-8. PubMed DOI
Peiter E. The Ever-Closer Union of Signals: Propagating Waves of Calcium and ROS Are Inextricably Linked. Plant Physiol. 2016;172:3–4. doi: 10.1104/pp.16.01037. PubMed DOI PMC
Pei Z.-M., Murata Y., Benning G., Thomine S., Klüsener B., Allen G.J., Grill E., Schroeder J.I. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature. 2000;406:731–734. doi: 10.1038/35021067. PubMed DOI
Foreman J., Demidchik V., Bothwell J.H.F., Mylona P., Miedema H., Torres M.A., Linstead P., Costa S., Brownlee C., Jones J.D.G., et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 2003;422:442–446. doi: 10.1038/nature01485. PubMed DOI
Yang T., Poovaiah B.W. Hydrogen peroxide homeostasis: Activation of plant catalase by calcium/calmodulin. Proc. Natl. Acad. Sci. USA. 2002;99:4097–4102. doi: 10.1073/pnas.052564899. PubMed DOI PMC
Mandadi K.K., Misra A., Ren S., McKnight T.D. BT2, a BTB protein, mediates multiple responses to nutrients, stresses and hormones in Arabidopsis. Plant Physiol. 2009;150:1930–1939. doi: 10.1104/pp.109.139220. PubMed DOI PMC
Hua Z., Vierstra R.D. The Cullin-RING Ubiquitin-Protein Ligases. Annu. Rev. Plant Biol. 2011;62:299–334. doi: 10.1146/annurev-arplant-042809-112256. PubMed DOI
Grant M., Brown I., Adams S., Knight M., Ainslie A., Mansfield J. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J. 2000;23:441–450. doi: 10.1046/j.1365-313x.2000.00804.x. PubMed DOI
Vanderauwera S., Zimmermann P., Rombauts S., Vandenabeele S., Langebartels C., Gruissem W., Inzé D., Van Breusegem F. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol. 2005;139:806–821. doi: 10.1104/pp.105.065896. PubMed DOI PMC
Desikan R., Hancock J.T., Bright J., Harrison J., Weir I., Hooley R., Neill S.J. A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol. 2005;137:831–834. doi: 10.1104/pp.104.056994. PubMed DOI PMC
Tognetti V.B., Van Aken O., Morreel K., Vandenbroucke K., van de Cotte B., De Clercq I., Chiwocha S., Fenske R., Prinsen E., Boerjan W., et al. Perturbation of Indole-3-Butyric Acid Homeostasis by the UDP-Glucosyltransferase UGT74E2 Modulates Arabidopsis Architecture and Water Stress Tolerance. Plant Cell. 2010;22:2660–2679. doi: 10.1105/tpc.109.071316. PubMed DOI PMC
Zhang S., Wu J., Yuan D., Zhang D., Huang Z., Xiao L., Yang C. Perturbation of auxin homeostasis caused by mitochondrial FtSH4 gene-mediated peroxidase accumulation regulates arabidopsis architecture. Mol. Plant. 2014;7:856–873. doi: 10.1093/mp/ssu006. PubMed DOI
Mashiguchi K., Tanaka K., Sakai T., Sugawara S., Kawaide H., Natsume M., Hanada A., Yaeno T., Shirasu K., Yao H., et al. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011;108:18512–18517. doi: 10.1073/pnas.1108434108. PubMed DOI PMC
Komatsu S., Han C., Nanjo Y., Altaf-Un-Nahar M., Wang K., He D., Yang P. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J. Proteome Res. 2013;12:4769–4784. doi: 10.1021/pr4001898. PubMed DOI
Gfeller A., Baerenfaller K., Loscos J., Chételat A., Baginsky S., Farmer E.E. Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves. Plant Physiol. 2011;156:1797–1807. doi: 10.1104/pp.111.181008. PubMed DOI PMC
Černý M., Jedelský P.L., Novák J., Schlosser A., Brzobohatý B. Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. Plant Cell Environ. 2014;37:1641–1655. doi: 10.1111/pce.12270. PubMed DOI
Žd’árská M., Zatloukalová P., Benítez M., Šedo O., Potěšil D., Novák O., Svačinová J., Pešek B., Malbeck J., Vašíčková J., et al. Proteome analysis in Arabidopsis reveals shoot- and root-specific targets of cytokinin action and differential regulation of hormonal homeostasis. Plant Physiol. 2013;161:918–930. doi: 10.1104/pp.112.202853. PubMed DOI PMC
Zhu M., Dai S., Zhu N., Booy A., Simons B., Yi S., Chen S. Methyl jasmonate responsive proteins in Brassica napus guard cells revealed by iTRAQ-based quantitative proteomics. J. Proteome Res. 2012;11:3728–3742. doi: 10.1021/pr300213k. PubMed DOI
Zhu M., Zhu N., Song W., Harmon A.C., Assmann S.M., Chen S. Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells. Plant J. 2014;78:491–515. doi: 10.1111/tpj.12490. PubMed DOI PMC
Cheng F., Blackburn K., Lin Y., Goshe M.B., Williamson J.D. Absolute protein quantification by LC/MS(E) for global analysis of salicylic acid-induced plant protein secretion responses. J. Proteome Res. 2009;8:82–93. doi: 10.1021/pr800649s. PubMed DOI
Li B., Takahashi D., Kawamura Y., Uemura M. Comparison of plasma membrane proteomic changes of Arabidopsis suspension-cultured cells (T87 Line) after cold and ABA treatment in association with freezing tolerance development. Plant Cell Physiol. 2012;53:543–554. doi: 10.1093/pcp/pcs010. PubMed DOI
Lochmanová G., Zdráhal Z., Konečná H., Koukalová Š., Malbeck J., Souček P., Válková M., Kiran N.S., Brzobohatý B. Cytokinin-induced photomorphogenesis in dark-grown Arabidopsis: A. proteomic analysis. J. Exp. Bot. 2008;59:3705–3719. doi: 10.1093/jxb/ern220. PubMed DOI
Proietti S., Bertini L., Timperio A.M., Zolla L., Caporale C., Caruso C. Crosstalk between salicylic acid and jasmonate in Arabidopsis investigated by an integrated proteomic and transcriptomic approach. Mol. Biosyst. 2013;9:1169–1187. doi: 10.1039/c3mb25569g. PubMed DOI
Böhmer M., Schroeder J.I. Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells. Plant J. 2011;67:105–118. doi: 10.1111/j.1365-313X.2011.04579.x. PubMed DOI PMC
Zhang Y., Liu S., Dai S.Y., Yuan J.S. Integration of shot-gun proteomics and bioinformatics analysis to explore plant hormone responses. BMC Bioinform. 2012;13:S8. doi: 10.1186/1471-2105-13-S15-S8. PubMed DOI PMC
Xing M., Xue H. A proteomics study of auxin effects in Arabidopsis thaliana. Acta Biochim. Biophys. Sin. (Shanghai) 2012;44:783–796. doi: 10.1093/abbs/gms057. PubMed DOI
Dueckershoff K., Mueller S., Mueller M.J., Reinders J. Impact of cyclopentenone-oxylipins on the proteome of Arabidopsis thaliana. Biochim. Biophys. Acta. 2008;1784:1975–1985. doi: 10.1016/j.bbapap.2008.09.003. PubMed DOI
Černý M., Dyčka F., Bobál′ová J., Brzobohatý B. Early cytokinin response proteins and phosphoproteins of Arabidopsis thaliana identified by proteome and phosphoproteome profiling. J. Exp. Bot. 2011;62:921–937. doi: 10.1093/jxb/erq322. PubMed DOI PMC
Rajjou L., Belghazi M., Huguet R., Robin C., Moreau A., Job C., Job D. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol. 2006;141:910–923. doi: 10.1104/pp.106.082057. PubMed DOI PMC
Li Z., Czarnecki O., Chourey K., Yang J., Tuskan G.A., Hurst G.B., Pan C., Chen J.-G. Strigolactone-regulated proteins revealed by iTRAQ-based quantitative proteomics in Arabidopsis. J. Proteome Res. 2014;13:1359–1372. doi: 10.1021/pr400925t. PubMed DOI
Shigeta T., Yasuda D., Mori T., Yoshimitsu Y., Nakamura Y., Yoshida S., Asami T., Okamoto S., Matsuo T. Characterization of brassinosteroid-regulated proteins in a nuclear-enriched fraction of Arabidopsis suspension-cultured cells. Plant Physiol. Biochem. 2011;49:985–995. doi: 10.1016/j.plaphy.2011.04.012. PubMed DOI
Wang P., Xue L., Batelli G., Lee S., Hou Y.-J., Van Oosten M.J., Zhang H., Tao W.A., Zhu J.-K. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc. Natl. Acad. Sci. USA. 2013;110:11205–11210. doi: 10.1073/pnas.1308974110. PubMed DOI PMC
Jourdan N., Martino C.F., El-Esawi M., Witczak J., Bouchet P.-E., d’Harlingue A., Ahmad M. Blue-light dependent ROS formation by Arabidopsis cryptochrome-2 may contribute toward its signaling role. Plant Signal. Behav. 2015;10:e1042647. doi: 10.1080/15592324.2015.1042647. PubMed DOI PMC
El-Esawi M., Arthaut L.-D., Jourdan N., d’Harlingue A., Link J., Martino C.F., Ahmad M. Blue-light induced biosynthesis of ROS contributes to the signaling mechanism of Arabidopsis cryptochrome. Sci. Rep. 2017;7:13875. doi: 10.1038/s41598-017-13832-z. PubMed DOI PMC
Consentino L., Lambert S., Martino C., Jourdan N., Bouchet P.-E., Witczak J., Castello P., El-Esawi M., Corbineau F., d’Harlingue A., et al. Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism. New Phytol. 2015;206:1450–1462. doi: 10.1111/nph.13341. PubMed DOI
Ha J.-H., Kim J.-H., Kim S.-G., Sim H.-J., Lee G., Halitschke R., Baldwin I.T., Kim J.-I., Park C.-M. Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in Arabidopsis. Plant J. 2018;94:790–798. doi: 10.1111/tpj.13902. PubMed DOI
Rajjou L., Debeaujon I. Seed longevity: Survival and maintenance of high germination ability of dry seeds. C. R. Biol. 2008;331:796–805. doi: 10.1016/j.crvi.2008.07.021. PubMed DOI
Yin X., He D., Gupta R., Yang P. Physiological and proteomic analyses on artificially aged Brassica napus seed. Front. Plant Sci. 2015;6:112. doi: 10.3389/fpls.2015.00112. PubMed DOI PMC
KOCSY G. Die or survive? Redox changes as seed viability markers. Plant Cell Environ. 2015;38:1008–1010. doi: 10.1111/pce.12515. PubMed DOI
Nguyen T.-P., Cueff G., Hegedus D.D., Rajjou L., Bentsink L. A role for seed storage proteins in Arabidopsis seed longevity. J. Exp. Bot. 2015;66:6399–6413. doi: 10.1093/jxb/erv348. PubMed DOI PMC
Gomes M., Garcia Q. Reactive oxygen species and seed germination. Biologia. 2013;68:351–357. doi: 10.2478/s11756-013-0161-y. DOI
Zhang Y., Chen B., Xu Z., Shi Z., Chen S., Huang X., Chen J., Wang X. Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination. J. Exp. Bot. 2014;65:3189–3200. doi: 10.1093/jxb/eru167. PubMed DOI PMC
Oracz K., Karpiński S. Phytohormones Signaling Pathways and ROS Involvement in Seed Germination. Front. Plant Sci. 2016;7:864. doi: 10.3389/fpls.2016.00864. PubMed DOI PMC
Kai K., Kasa S., Sakamoto M., Aoki N., Watabe G., Yuasa T., Iwaya-Inoue M., Ishibashi Y. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination. Plant Signal. Behav. 2016;11:e1180492. doi: 10.1080/15592324.2016.1180492. PubMed DOI PMC
Ishibashi Y., Aoki N., Kasa S., Sakamoto M., Kai K., Tomokiyo R., Watabe G., Yuasa T., Iwaya-Inoue M. The Interrelationship between Abscisic Acid and Reactive Oxygen Species Plays a Key Role in Barley Seed Dormancy and Germination. Front. Plant Sci. 2017;8:275. doi: 10.3389/fpls.2017.00275. PubMed DOI PMC
Lariguet P., Ranocha P., De Meyer M., Barbier O., Penel C., Dunand C. Identification of a hydrogen peroxide signalling pathway in the control of light-dependent germination in Arabidopsis. Planta. 2013;238:381–395. doi: 10.1007/s00425-013-1901-5. PubMed DOI
Wojtyla Ł., Lechowska K., Kubala S., Garnczarska M. Different Modes of Hydrogen Peroxide Action During Seed Germination. Front. Plant Sci. 2016;7:66. doi: 10.3389/fpls.2016.00066. PubMed DOI PMC
Barba-Espín G., Hernández J.A., Diaz-Vivancos P. Role of H2O2 in pea seed germination. Plant Signal. Behav. 2012;7:193–195. doi: 10.4161/psb.18881. PubMed DOI PMC
Bazin J., Langlade N., Vincourt P., Arribat S., Balzergue S., El-Maarouf-Bouteau H., Bailly C. Targeted mRNA Oxidation Regulates Sunflower Seed Dormancy Alleviation during Dry After-Ripening. Plant Cell. 2011;23:2196–2208. doi: 10.1105/tpc.111.086694. PubMed DOI PMC
El-Maarouf-Bouteau H., Meimoun P., Job C., Job D., Bailly C. Role of protein and mRNA oxidation in seed dormancy and germination. Front. Plant Sci. 2013;4:77. doi: 10.3389/fpls.2013.00077. PubMed DOI PMC
Ishibashi Y., Kasa S., Sakamoto M., Aoki N., Kai K., Yuasa T., Hanada A., Yamaguchi S., Iwaya-Inoue M. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination. PLoS ONE. 2015;10:e0143173. doi: 10.1371/journal.pone.0143173. PubMed DOI PMC
Aoki N., Ishibashi Y., Kai K., Tomokiyo R., Yuasa T., Iwaya-Inoue M. Programmed cell death in barley aleurone cells is not directly stimulated by reactive oxygen species produced in response to gibberellin. J. Plant Physiol. 2014;171:615–618. doi: 10.1016/j.jplph.2014.01.005. PubMed DOI
Ishibashi Y., Tawaratsumida T., Kondo K., Kasa S., Sakamoto M., Aoki N., Zheng S.-H., Yuasa T., Iwaya-Inoue M. Reactive Oxygen Species Are Involved in Gibberellin/Abscisic Acid Signaling in Barley Aleurone Cells. Plant Physiol. 2012;158:1705–1714. doi: 10.1104/pp.111.192740. PubMed DOI PMC
Farouk S., Abdul Qados A.M.S. Enhancing seed quality and productivity as well as physio-anatomical responses of pea plants by folic acid and/or hydrogen peroxide application. Sci. Hortic. (Amsterdam) 2018;240:29–37. doi: 10.1016/j.scienta.2018.05.049. DOI
Bouallègue A., Souissi F., Nouairi I., Souibgui M., Abbes Z., Mhadhbi H. Salicylic acid and hydrogen peroxide pretreatments alleviate salt stress in faba bean (Vicia faba) seeds during germination. Seed Sci. Technol. 2017;45:675–690. doi: 10.15258/sst.2017.45.3.07. DOI
Li B., Cai Q., Ma S., Li S., Zhang X., Yu Y. Regulation of NPA and ACC on H2O2-Induced Pea Primary Horizontal Bending Root. J. Plant Growth Regul. 2018;37:246–254. doi: 10.1007/s00344-017-9722-6. DOI
Carol R.J., Takeda S., Linstead P., Durrant M.C., Kakesova H., Derbyshire P., Drea S., Zarsky V., Dolan L. A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature. 2005;438:1013–1016. doi: 10.1038/nature04198. PubMed DOI
Takeda S., Gapper C., Kaya H., Bell E., Kuchitsu K., Dolan L. Local positive feedback regulation determines cell shape in root hair cells. Science. 2008;319:1241–1244. doi: 10.1126/science.1152505. PubMed DOI
Qu Y., Wang Q., Guo J., Wang P., Song P., Jia Q., Zhang X., Kudla J., Zhang W., Zhang Q. Peroxisomal CuAOζ and its product H2O2 regulate the distribution of auxin and IBA-dependent lateral root development in Arabidopsis. J. Exp. Bot. 2017;68:4851–4867. doi: 10.1093/jxb/erx290. PubMed DOI
Su C., Liu L., Liu H., Ferguson B.J., Zou Y., Zhao Y., Wang T., Wang Y., Li X. H2O2 regulates root system architecture by modulating the polar transport and redistribution of auxin. J. Plant Biol. 2016;59:260–270. doi: 10.1007/s12374-016-0052-1. DOI
Takáč T., Obert B., Rolčík J., Šamaj J. Improvement of adventitious root formation in flax using hydrogen peroxide. New Biotechnol. 2016;33:728–734. doi: 10.1016/j.nbt.2016.02.008. PubMed DOI
Chen Z., Gu Q., Yu X., Huang L., Xu S., Wang R., Shen W., Shen W. Hydrogen peroxide acts downstream of melatonin to induce lateral root formation. Ann. Bot. 2018;121:1127–1136. doi: 10.1093/aob/mcx207. PubMed DOI PMC
Xiong J., Yang Y., Fu G., Tao L. Novel roles of hydrogen peroxide (H2O2) in regulating pectin synthesis and demethylesterification in the cell wall of rice (Oryza sativa) root tips. New Phytol. 2015;206:118–126. doi: 10.1111/nph.13285. PubMed DOI
Ivanchenko M.G., den Os D., Monshausen G.B., Dubrovsky J.G., Bednárová A., Krishnan N. Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth. Ann. Bot. 2013;112:1107–1116. doi: 10.1093/aob/mct181. PubMed DOI PMC
Zhou L., Hou H., Yang T., Lian Y., Sun Y., Bian Z., Wang C. Exogenous hydrogen peroxide inhibits primary root gravitropism by regulating auxin distribution during Arabidopsis seed germination. Plant Physiol. Biochem. PPB. 2018;128:126–133. doi: 10.1016/j.plaphy.2018.05.014. PubMed DOI
Jiao Y., Sun L., Song Y., Wang L., Liu L., Zhang L., Liu B., Li N., Miao C., Hao F. AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis. J. Exp. Bot. 2013;64:4183–4192. doi: 10.1093/jxb/ert228. PubMed DOI
He H., Yan J., Yu X., Liang Y., Fang L., Scheller H.V., Zhang A. The NADPH-oxidase AtRbohI plays a positive role in drought-stress response in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 2017;491:834–839. doi: 10.1016/j.bbrc.2017.05.131. PubMed DOI
Li H., He J., Yang X., Li X., Luo D., Wei C., Ma J., Zhang Y., Yang J., Zhang X. Glutathione-dependent induction of local and systemic defense against oxidative stress by exogenous melatonin in cucumber (Cucumis sativus L.) J. Pineal Res. 2016;60:206–216. doi: 10.1111/jpi.12304. PubMed DOI
Kong X., Luo Z., Dong H., Eneji A.E., Li W. H2O2 and ABA signaling are responsible for the increased Na+ efflux and water uptake in Gossypium hirsutum L. roots in the non-saline side under non-uniform root zone salinity. J. Exp. Bot. 2016;67:2247–2261. doi: 10.1093/jxb/erw026. PubMed DOI
Yamauchi T., Yoshioka M., Fukazawa A., Mori H., Nishizawa N.K., Tsutsumi N., Yoshioka H., Nakazono M. An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions. Plant Cell. 2017;29:775–790. doi: 10.1105/tpc.16.00976. PubMed DOI PMC
Mangano S., Denita-Juarez S.P., Choi H.-S., Marzol E., Hwang Y., Ranocha P., Velasquez S.M., Borassi C., Barberini M.L., Aptekmann A.A., et al. Molecular link between auxin and ROS-mediated polar growth. Proc. Natl. Acad. Sci. USA. 2017;114:5289–5294. doi: 10.1073/pnas.1701536114. PubMed DOI PMC
Voxeur A., Höfte H. Cell wall integrity signaling in plants: “To grow or not to grow that’s the question”. Glycobiology. 2016;26:950–960. doi: 10.1093/glycob/cww029. PubMed DOI
Chen X.-J., Xia X.-J., Guo X., Zhou Y.-H., Shi K., Zhou J., Yu J.-Q. Apoplastic H2 O2 plays a critical role in axillary bud outgrowth by altering auxin and cytokinin homeostasis in tomato plants. New Phytol. 2016;211:1266–1278. doi: 10.1111/nph.14015. PubMed DOI
Guo Z., Wang F., Xiang X., Ahammed G.J., Wang M., Onac E., Zhou J., Xia X., Shi K., Yin X., et al. Systemic Induction of Photosynthesis via Illumination of the Shoot Apex Is Mediated Sequentially by Phytochrome, B., Auxin and Hydrogen Peroxide in Tomato. Plant Physiol. 2016;172:1259–1272. doi: 10.1104/pp.16.01202. PubMed DOI PMC
Sandalio L.M., Rodríguez-Serrano M., Romero-Puertas M.C. Leaf epinasty and auxin: A biochemical and molecular overview. Plant Sci. 2016;253:187–193. doi: 10.1016/j.plantsci.2016.10.002. PubMed DOI
Devireddy A.R., Zandalinas S.I., Gómez-Cadenas A., Blumwald E., Mittler R. Coordinating the overall stomatal response of plants: Rapid leaf-to-leaf communication during light stress. Sci. Signal. 2018;11:eaam9514. doi: 10.1126/scisignal.aam9514. PubMed DOI
Ha Y., Shang Y., Nam K.H. Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis. J. Exp. Bot. 2016;67:6297–6308. doi: 10.1093/jxb/erw385. PubMed DOI PMC
Xia X.-J., Gao C.-J., Song L.-X., Zhou Y.-H., Shi K., Yu J.-Q. Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum. Plant Cell Environ. 2014;37:2036–2050. doi: 10.1111/pce.12275. PubMed DOI
Lv S., Zhang Y., Li C., Liu Z., Yang N., Pan L., Wu J., Wang J., Yang J., Lv Y., et al. Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. New Phytol. 2018;217:290–304. doi: 10.1111/nph.14813. PubMed DOI
Khokon M.A.R., Salam M.A., Jammes F., Ye W., Hossain M.A., Okuma E., Nakamura Y., Mori I.C., Kwak J.M., Murata Y. MPK9 and MPK12 function in SA-induced stomatal closure in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 2017;81:1394–1400. doi: 10.1080/09168451.2017.1308244. PubMed DOI
Ehonen S., Yarmolinsky D., Kollist H., Kangasjärvi J. Reactive Oxygen Species, Photosynthesis and Environment in the Regulation of Stomata. Antioxid. Redox Signal. 2017:ars.2017.7455. doi: 10.1089/ars.2017.7455. PubMed DOI
Ge X.-M., Cai H.-L., Lei X., Zhou X., Yue M., He J.-M. Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis. Plant J. 2015;82:138–150. doi: 10.1111/tpj.12799. PubMed DOI
Shi C., Qi C., Ren H., Huang A., Hei S., She X. Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis. Plant J. 2015;82:280–301. doi: 10.1111/tpj.12815. PubMed DOI
Li Y., Xu S., Wang Z., He L., Xu K., Wang G. Glucose triggers stomatal closure mediated by basal signaling through HXK1 and PYR/RCAR receptors in Arabidopsis. J. Exp. Bot. 2018;69:1471–1484. doi: 10.1093/jxb/ery024. PubMed DOI PMC
Nazareno A.L., Hernandez B.S. A mathematical model of the interaction of abscisic acid, ethylene and methyl jasmonate on stomatal closure in plants. PLoS ONE. 2017;12:e0171065. doi: 10.1371/journal.pone.0171065. PubMed DOI PMC
Dubovskaya L.V., Bakakina Y.S., Kolesneva E.V., Sodel D.L., Mcainsh M.R., Hetherington A.M., Volotovski I.D. cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1. New Phytol. 2011;191:57–69. doi: 10.1111/j.1469-8137.2011.03661.x. PubMed DOI
Sun L., Li Y., Miao W., Piao T., Hao Y., Hao F.-S. NADK2 positively modulates abscisic acid-induced stomatal closure by affecting accumulation of H2O2, Ca2+ and nitric oxide in Arabidopsis guard cells. Plant Sci. 2017;262:81–90. doi: 10.1016/j.plantsci.2017.06.003. PubMed DOI
Agurla S., Gayatri G., Raghavendra A.S. Polyamines increase nitric oxide and reactive oxygen species in guard cells of Arabidopsis thaliana during stomatal closure. Protoplasma. 2018;255:153–162. doi: 10.1007/s00709-017-1139-3. PubMed DOI
Jardim-Messeder D., Caverzan A., Rauber R., Cunha J.R., Carvalho F.E.L., Gaeta M.L., da Fonseca G.C., Costa J.M., Frei M., Silveira J.A.G., et al. Thylakoidal APX modulates hydrogen peroxide content and stomatal closure in rice (Oryza sativa L.) Environ. Exp. Bot. 2018;150:46–56. doi: 10.1016/j.envexpbot.2018.02.012. DOI
Mao X., Zheng Y., Xiao K., Wei Y., Zhu Y., Cai Q., Chen L., Xie H., Zhang J. OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice. Biochem. Biophys. Res. Commun. 2018;495:461–467. doi: 10.1016/j.bbrc.2017.11.045. PubMed DOI
Kimura S., Kaya H., Kawarazaki T., Hiraoka G., Senzaki E., Michikawa M., Kuchitsu K. Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochim. Biophys. Acta. 2012;1823:398–405. doi: 10.1016/j.bbamcr.2011.09.011. PubMed DOI
Sirichandra C., Gu D., Hu H.-C., Davanture M., Lee S., Djaoui M., Valot B., Zivy M., Leung J., Merlot S., et al. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett. 2009;583:2982–2986. doi: 10.1016/j.febslet.2009.08.033. PubMed DOI
Rodrigues O., Reshetnyak G., Grondin A., Saijo Y., Leonhardt N., Maurel C., Verdoucq L. Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure. Proc. Natl. Acad. Sci. USA. 2017;114:9200–9205. doi: 10.1073/pnas.1704754114. PubMed DOI PMC
Assmann S.M., Jegla T. Guard cell sensory systems: Recent insights on stomatal responses to light, abscisic acid and CO2. Curr. Opin. Plant Biol. 2016;33:157–167. doi: 10.1016/j.pbi.2016.07.003. PubMed DOI
Scuffi D., Nietzel T., Di Fino L.M., Meyer A.J., Lamattina L., Schwarzländer M., Laxalt A.M., García-Mata C. Hydrogen Sulfide Increases Production of NADPH Oxidase-Dependent Hydrogen Peroxide and Phospholipase D-Derived Phosphatidic Acid in Guard Cell Signaling. Plant Physiol. 2018;176:2532–2542. doi: 10.1104/pp.17.01636. PubMed DOI PMC
Watkins J.M., Chapman J.M., Muday G.K. Abscisic Acid-Induced Reactive Oxygen Species Are Modulated by Flavonols to Control Stomata Aperture. Plant Physiol. 2017;175:1807–1825. doi: 10.1104/pp.17.01010. PubMed DOI PMC
An Y., Feng X., Liu L., Xiong L., Wang L. ALA-Induced Flavonols Accumulation in Guard Cells Is Involved in Scavenging H2O2 and Inhibiting Stomatal Closure in Arabidopsis Cotyledons. Front. Plant Sci. 2016;7:1713. doi: 10.3389/fpls.2016.01713. PubMed DOI PMC
An Y., Liu L., Chen L., Wang L. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca(2+) Levels in Guard Cells. Front. Plant Sci. 2016;7:482. doi: 10.3389/fpls.2016.00482. PubMed DOI PMC
Serrano I., Romero-Puertas M.C., Sandalio L.M., Olmedilla A. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J. Exp. Bot. 2015;66:2869–2876. doi: 10.1093/jxb/erv083. PubMed DOI
Lassig R., Gutermuth T., Bey T.D., Konrad K.R., Romeis T. Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J. 2014;78:94–106. doi: 10.1111/tpj.12452. PubMed DOI
Kaya H., Nakajima R., Iwano M., Kanaoka M.M., Kimura S., Takeda S., Kawarazaki T., Senzaki E., Hamamura Y., Higashiyama T., et al. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell. 2014;26:1069–1080. doi: 10.1105/tpc.113.120642. PubMed DOI PMC
Duan Q., Kita D., Johnson E.A., Aggarwal M., Gates L., Wu H.-M., Cheung A.Y. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat. Commun. 2014;5:3129. doi: 10.1038/ncomms4129. PubMed DOI
Huan C., Jiang L., An X., Yu M., Xu Y., Ma R., Yu Z. Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening. Plant Physiol. Biochem. PPB. 2016;104:294–303. doi: 10.1016/j.plaphy.2016.05.013. PubMed DOI
Kumar V., Irfan M., Ghosh S., Chakraborty N., Chakraborty S., Datta A. Fruit ripening mutants reveal cell metabolism and redox state during ripening. Protoplasma. 2016;253:581–594. doi: 10.1007/s00709-015-0836-z. PubMed DOI
Hurr B.M., Huber D.J., Vallejos C.E., Lee E., Sargent S.A. Ethylene-induced overproduction of reactive oxygen species is responsible for the development of watersoaking in immature cucumber fruit. J. Plant Physiol. 2013;170:56–62. doi: 10.1016/j.jplph.2012.08.011. PubMed DOI
Avila-Ospina L., Moison M., Yoshimoto K., Masclaux-Daubresse C. Autophagy, plant senescence and nutrient recycling. J. Exp. Bot. 2014;65:3799–3811. doi: 10.1093/jxb/eru039. PubMed DOI
Bieker S., Riester L., Stahl M., Franzaring J., Zentgraf U. Senescence-specific Alteration of Hydrogen Peroxide Levels in Arabidopsis thaliana and Oilseed Rape Spring Variety Brassica napus L. cv. MozartF. J. Integr. Plant Biol. 2012;54:540–554. doi: 10.1111/j.1744-7909.2012.01147.x. PubMed DOI
Wang H., Lin J., Chang Y., Jiang C.-Z. Comparative Transcriptomic Analysis Reveals That Ethylene/ H2O2-Mediated Hypersensitive Response and Programmed Cell Death Determine the Compatible Interaction of Sand Pear and Alternaria alternata. Front. Plant Sci. 2017;8:195. doi: 10.3389/fpls.2017.00195. PubMed DOI PMC
Liu J., Xu Y., Zhang Z., Wei J. Hydrogen peroxide promotes programmed cell death and salicylic acid accumulation during the induced production of sesquiterpenes in cultured cell suspensions of Aquilaria sinensis. Funct. Plant Biol. 2015;42:337–346. doi: 10.1071/FP14189. PubMed DOI
Zimmermann P., Heinlein C., Orendi G., Zentgraf U. Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ. 2006;29:1049–1060. doi: 10.1111/j.1365-3040.2005.01459.x. PubMed DOI
Jajić I., Sarna T., Szewczyk G., Strzałka K. Changes in production of reactive oxygen species in illuminated thylakoids isolated during development and senescence of barley. J. Plant Physiol. 2015;184:49–56. doi: 10.1016/j.jplph.2015.06.009. PubMed DOI
Niewiadomska E., Polzien L., Desel C., Rozpadek P., Miszalski Z., Krupinska K. Spatial patterns of senescence and development-dependent distribution of reactive oxygen species in tobacco (Nicotiana tabacum) leaves. J. Plant Physiol. 2009;166:1057–1068. doi: 10.1016/j.jplph.2008.12.014. PubMed DOI
Saxena I., Srikanth S., Chen Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. Front. Plant Sci. 2016;7:570. doi: 10.3389/fpls.2016.00570. PubMed DOI PMC
Diao Q., Song Y., Shi D., Qi H. Interaction of Polyamines, Abscisic Acid, Nitric Oxide and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings. Front. Plant Sci. 2017;8:203. doi: 10.3389/fpls.2017.00203. PubMed DOI PMC
Ren C.-G., Kong C.-C., Xie Z.-H. Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biol. 2018;18:74. doi: 10.1186/s12870-018-1292-7. PubMed DOI PMC
Freitas V.S., de Souza Miranda R., Costa J.H., de Oliveira D.F., de Oliveira Paula S., de Castro Migueld E., Freire R.S., Prisco J.T., Gomes-Filho E. Ethylene triggers salt tolerance in maize genotypes by modulating polyamine catabolism enzymes associated with H2O2 production. Environ. Exp. Bot. 2018;145:75–86. doi: 10.1016/j.envexpbot.2017.10.022. DOI
224 Kaur N., Kirat K., Saini S., Sharma I., Gantet P., Pati P.K. Reactive oxygen species generating system and brassinosteroids are linked to salt stress adaptation mechanisms in rice. Plant Signal. Behav. 2016;11:e1247136. doi: 10.1080/15592324.2016.1247136. PubMed DOI PMC
Yang C.-Y., Huang Y.-C., Ou S.-L. ERF73/HRE1 is involved in H2O2 production via hypoxia-inducible Rboh gene expression in hypoxia signaling. Protoplasma. 2017;254:1705–1714. doi: 10.1007/s00709-016-1064-x. PubMed DOI
Yao Y., He R.J., Xie Q.L., Zhao X.H., Deng X.M., He J.B., Song L., He J., Marchant A., Chen X.-Y., et al. ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytol. 2017;213:1667–1681. doi: 10.1111/nph.14278. PubMed DOI
Zhang M., Smith J.A.C., Harberd N.P., Jiang C. The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. Plant Mol. Biol. 2016;91:651–659. doi: 10.1007/s11103-016-0488-1. PubMed DOI
Sun M., Jiang F., Cen B., Wen J., Zhou Y., Wu Z. Respiratory burst oxidase homologue-dependent H2O2 and chloroplast H2O2 are essential for the maintenance of acquired thermotolerance during recovery after acclimation. Plant Cell Environ. 2018 doi: 10.1111/pce.13351. PubMed DOI
Birch P.R.J., Avrova A.O., Dellagi A., Lacomme C., Cruz S.S., Lyon G.D. Annual Plant. Reviews. John Wiley & Sons, Ltd.; Chichester, UK: 2018. Programmed Cell Death in Plants in Response to Pathogen Attack; pp. 184–208.
Novák J., Pavlů J., Novák O., Nožková-Hlaváčková V., Špundová M., Hlavinka J., Koukalová Š., Skalák J., Černý M., Brzobohatý B. High cytokinin levels induce a hypersensitive-like response in tobacco. Ann. Bot. 2013;112:41–55. doi: 10.1093/aob/mct092. PubMed DOI PMC
Nováková M., Šašek V., Trdá L., Krutinová H., Mongin T., Valentová O., Balesdent M.-H., Rouxel T., Burketová L. L eptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2O2) accumulation in Brassica napus. Mol. Plant Pathol. 2016;17:818–831. doi: 10.1111/mpp.12332. PubMed DOI PMC
Song L.-X., Xu X.-C., Wang F.-N., Wang Y., Xia X.-J., Shi K., Zhou Y.-H., Zhou J., Yu J.-Q. Brassinosteroids act as a positive regulator for resistance against root-knot nematode involving RESPIRATORY BURST OXIDASE HOMOLOG-dependent activation of MAPKs in tomato. Plant Cell Environ. 2018;41:1113–1125. doi: 10.1111/pce.12952. PubMed DOI
Deng X.-G., Zhu T., Zou L.-J., Han X.-Y., Zhou X., Xi D.-H., Zhang D.-W., Lin H.-H. Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana. Plant J. 2016;85:478–493. doi: 10.1111/tpj.13120. PubMed DOI
Zhu F., Chen J., Xiao X., Zhang M., Yun Z., Zeng Y., Xu J., Cheng Y., Deng X. Salicylic acid treatment reduces the rot of postharvest citrus fruit by inducing the accumulation of H2O2, primary metabolites and lipophilic polymethoxylated flavones. Food Chem. 2016;207:68–74. doi: 10.1016/j.foodchem.2016.03.077. PubMed DOI
Ellouzi H., Sghayar S., Abdelly C. H2O2 seed priming improves tolerance to salinity; drought and their combined effect more than mannitol in Cakile maritima when compared to Eutrema salsugineum. J. Plant Physiol. 2017;210:38–50. doi: 10.1016/j.jplph.2016.11.014. PubMed DOI
Richards S.L., Wilkins K.A., Swarbreck S.M., Anderson A.A., Habib N., Smith A.G., McAinsh M., Davies J.M. The hydroxyl radical in plants: From seed to seed. J. Exp. Bot. 2015;66:37–46. doi: 10.1093/jxb/eru398. PubMed DOI
Imlay J.A. Cellular Defenses against Superoxide and Hydrogen Peroxide. Annu. Rev. Biochem. 2008;77:755–776. doi: 10.1146/annurev.biochem.77.061606.161055. PubMed DOI PMC
Demidchik V., Shabala S.N., Coutts K.B., Tester M.A., Davies J.M. Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. J. Cell Sci. 2003;116:81–88. doi: 10.1242/jcs.00201. PubMed DOI
Laohavisit A., Shang Z., Rubio L., Cuin T.A., Véry A.-A., Wang A., Mortimer J.C., Macpherson N., Coxon K.M., Battey N.H., et al. Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca2+- and K+-permeable conductance in root cells. Plant Cell. 2012;24:1522–1533. doi: 10.1105/tpc.112.097881. PubMed DOI PMC
Demidchik V., Cuin T.A., Svistunenko D., Smith S.J., Miller A.J., Shabala S., Sokolik A., Yurin V. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: Single-channel properties, genetic basis and involvement in stress-induced cell death. J. Cell Sci. 2010;123:1468–1479. doi: 10.1242/jcs.064352. PubMed DOI
Demidchik V., Straltsova D., Medvedev S.S., Pozhvanov G.A., Sokolik A., Yurin V. Stress-induced electrolyte leakage: The role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J. Exp. Bot. 2014;65:1259–1270. doi: 10.1093/jxb/eru004. PubMed DOI
Demidchik V., Shabala S. Mechanisms of cytosolic calcium elevation in plants: The role of ion channels, calcium extrusion systems and NADPH oxidase-mediated “ROS-Ca2+ Hub”. Funct. Plant Biol. 2018;45:9. doi: 10.1071/FP16420. PubMed DOI
Sun J., Wang M.-J., Ding M.-Q., Deng S.-R., Liu M.-Q., Lu C.-F., Zhou X.-Y., Shen X., Zheng X.-J., Zhang Z.-K., et al. H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ. 2010;33:943–958. doi: 10.1111/j.1365-3040.2010.02118.x. PubMed DOI
Gilroy S., Białasek M., Suzuki N., Górecka M., Devireddy A.R., Karpiński S., Mittler R. ROS, Calcium and Electric Signals: Key Mediators of Rapid Systemic Signaling in Plants. Plant Physiol. 2016;171:1606–1615. doi: 10.1104/pp.16.00434. PubMed DOI PMC
Crawford T., Lehotai N., Strand Å. The role of retrograde signals during plant stress responses. J. Exp. Bot. 2018;69:2783–2795. doi: 10.1093/jxb/erx481. PubMed DOI
Exposito-Rodriguez M., Laissue P.P., Yvon-Durocher G., Smirnoff N., Mullineaux P.M. Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat. Commun. 2017;8:49. doi: 10.1038/s41467-017-00074-w. PubMed DOI PMC
Pavlů J., Novák J., Koukalová V., Luklová M., Brzobohatý B., Černý M. Cytokinin at the crossroad of abiotic stress signalling pathways. Int. J. Mol. Sci. 2018;19:2450. doi: 10.3390/ijms19082450. PubMed DOI PMC
Waszczak C., Carmody M., Kangasjärvi J. Reactive Oxygen Species in Plant Signaling. Annu. Rev. Plant Biol. 2018;69:209–236. doi: 10.1146/annurev-arplant-042817-040322. PubMed DOI
Pratsinis A., Kelesidis G.A., Zuercher S., Krumeich F., Bolisetty S., Mezzenga R., Leroux J.-C., Sotiriou G.A. Enzyme-Mimetic Antioxidant Luminescent Nanoparticles for Highly Sensitive Hydrogen Peroxide Biosensing. ACS Nano. 2017;11:12210–12218. doi: 10.1021/acsnano.7b05518. PubMed DOI
Neal C.J., Gupta A., Barkam S., Saraf S., Das S., Cho H.J., Seal S. Picomolar Detection of Hydrogen Peroxide using Enzyme-free Inorganic Nanoparticle-based Sensor. Sci. Rep. 2017;7:1324. doi: 10.1038/s41598-017-01356-5. PubMed DOI PMC
Shabrangy A., Roustan V., Reipert S., Weidinger M., Roustan P.-J., Stoger E., Weckwerth W., Ibl V. Using RT-qPCR, Proteomics and Microscopy to Unravel the Spatio-Temporal Expression and Subcellular Localization of Hordoindolines Across Development in Barley Endosperm. Front. Plant Sci. 2018;9:775. doi: 10.3389/fpls.2018.00775. PubMed DOI PMC
Divergent Molecular Responses to Heavy Water in Arabidopsis thaliana Compared to Bacteria and Yeast
Phytochromes and Their Role in Diurnal Variations of ROS Metabolism and Plant Proteome
Defense mechanisms promoting tolerance to aggressive Phytophthora species in hybrid poplar