Divergent Molecular Responses to Heavy Water in Arabidopsis thaliana Compared to Bacteria and Yeast

. 2024 Nov 06 ; 13 (22) : . [epub] 20241106

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39599330

Heavy water (D2O) is scarce in nature, and despite its physical similarity to water, D2O disrupts cellular function due to the isotope effect. While microbes can survive in nearly pure D2O, eukaryotes such as Arabidopsis thaliana are more sensitive and are unable to survive higher concentrations of D2O. To explore the underlying molecular mechanisms for these differences, we conducted a comparative proteomic analysis of E. coli, S. cerevisiae, and Arabidopsis after 180 min of growth in a D2O-supplemented media. Shared adaptive mechanisms across these species were identified, including changes in ribosomal protein abundances, accumulation of chaperones, and altered metabolism of polyamines and amino acids. However, Arabidopsis exhibited unique vulnerabilities, such as a muted stress response, lack of rapid activation of reactive oxygen species metabolism, and depletion of stress phytohormone abscisic acid signaling components. Experiments with mutants show that modulating the HSP70 pool composition may promote D2O resilience. Additionally, Arabidopsis rapidly incorporated deuterium into sucrose, indicating that photosynthesis facilitates deuterium intake. These findings provide valuable insights into the molecular mechanisms that dictate differential tolerance to D2O across species and lay the groundwork for further studies on the biological effects of uncommon isotopes, with potential implications for biotechnology and environmental science.

Zobrazit více v PubMed

Meija J., Coplen T.B., Berglund M., Brand W.A., De Bièvre P., Gröning M., Holden N.E., Irrgeher J., Loss R.D., Walczyk T., et al. Isotopic Compositions of the Elements 2013 (IUPAC Technical Report) Pure Appl. Chem. 2016;88:293–306. doi: 10.1515/pac-2015-0503. DOI

Giubertoni G., Bonn M., Woutersen S. D2O as an Imperfect Replacement for H2O: Problem or Opportunity for Protein Research? J. Phys. Chem. B. 2023;127:8086–8094. doi: 10.1021/acs.jpcb.3c04385. PubMed DOI PMC

Cardoso M.V.C., Carvalho L.V.C., Sabadini E. Solubility of Carbohydrates in Heavy Water. Carbohydr. Res. 2012;353:57–61. doi: 10.1016/j.carres.2012.03.005. PubMed DOI

Jelińska-Kazimierczuk M., Szydłowski J. Isotope Effect on the Solubility of Amino Acids in Water. J. Solut. Chem. 1996;25:1175–1184. doi: 10.1007/BF00972645. DOI

Kushner D.J., Baker A., Dunstall T.G. Pharmacological Uses and Perspectives of Heavy Water and Deuterated Compounds. Can. J. Physiol. Pharmacol. 1999;77:79–88. doi: 10.1139/y99-005. PubMed DOI

Opitz C., Ahrné E., Goldie K.N., Schmidt A., Grzesiek S. Deuterium Induces a Distinctive Escherichia coli Proteome That Correlates with the Reduction in Growth Rate. J. Biol. Chem. 2019;294:2279–2292. doi: 10.1074/jbc.RA118.006914. PubMed DOI PMC

Bartel B., Varshavsky A. Hypersensitivity to Heavy Water: A New Conditional Phenotype. Cell. 1988;52:935–941. doi: 10.1016/0092-8674(88)90435-7. PubMed DOI

Hochuli M., Szyperski T., Wüthrich K. Deuterium Isotope Effects on the Central Carbon Metabolism of Escherichia coli Cells Grown on a D2O-Containing Minimal Medium. J. Biomol. NMR. 2000;17:33–42. doi: 10.1023/A:1008329124672. PubMed DOI

Kampmeyer C., Johansen J.V., Holmberg C., Karlson M., Gersing S.K., Bordallo H.N., Kragelund B.B., Lerche M.H., Jourdain I., Winther J.R., et al. Mutations in a Single Signaling Pathway Allow Cell Growth in Heavy Water. ACS Synth. Biol. 2020;9:733–748. doi: 10.1021/acssynbio.9b00376. PubMed DOI

Li X., Snyder M.P. Yeast Longevity Promoted by Reversing Aging-Associated Decline in Heavy Isotope Content. NPJ Aging Mech. Dis. 2016;2:16004. doi: 10.1038/npjamd.2016.4. PubMed DOI PMC

Blake M.I., Crane F.A., Uphaus R.A., Katz J.J. Effect of Heavy Water on the Germination of a Number of Species of Seeds. Planta. 1967;78:35–38. doi: 10.1007/BF00384855. PubMed DOI

Yang X., Chen W., Rendahl A.K., Hegeman A.D., Gray W.M., Cohen J.D. Measuring the Turnover Rates of Arabidopsis Proteins Using Deuterium Oxide: An Auxin Signaling Case Study. Plant J. 2010;63:680–695. doi: 10.1111/j.1365-313X.2010.04266.x. PubMed DOI

Evans B.R., Bali G., Foston M., Ragauskas A.J., O’Neill H.M., Shah R., McGaughey J., Reeves D., Rempe C.S., Davison B.H. Production of Deuterated Switchgrass by Hydroponic Cultivation. Planta. 2015;242:215–222. doi: 10.1007/s00425-015-2298-0. PubMed DOI

Vergara F., Itouga M., Becerra R.G., Hirai M., Ordaz-Ortiz J.J., Winkler R. Funaria hygrometrica Hedw. Elevated Tolerance to D2O: Its Use for the Production of Highly Deuterated Metabolites. Planta. 2018;247:405–412. doi: 10.1007/s00425-017-2794-5. PubMed DOI

Bhatia C.R., Smith H.H. Adaptation and Growth Response of Arabidopsis thaliana to Deuterium. Planta. 1968;80:176–184. doi: 10.1007/BF00385593. DOI

John R.S. The History and Theory of the Doubly Labeled Water Technique. Am. J. Clin. Nutr. 1998;68:932S–938S. doi: 10.1093/ajcn/68.4.932S. PubMed DOI

Ben Abu N., Mason P.E., Klein H., Dubovski N., Ben Shoshan-Galeczki Y., Malach E., Pražienková V., Maletínská L., Tempra C., Chamorro V.C., et al. Sweet Taste of Heavy Water. Commun. Biol. 2021;4:440. doi: 10.1038/s42003-021-01964-y. PubMed DOI PMC

Heijnen J.J. Biosystems Engineering II. Springer; Berlin/Heidelberg, Germany: 2010. Impact of Thermodynamic Principles in Systems Biology; pp. 139–162. PubMed

Richarme G., Liu C., Mihoub M., Abdallah J., Leger T., Joly N., Liebart J.-C., Jurkunas U.V., Nadal M., Bouloc P., et al. Guanine Glycation Repair by DJ-1/Park7 and Its Bacterial Homologs. Science. 2017;357:208–211. doi: 10.1126/science.aag1095. PubMed DOI

Inada T., Kawakami K., Chen S.M., Takiff H.E., Court D.L., Nakamura Y. Temperature-Sensitive Lethal Mutant of Era, a G Protein in Escherichia coli. J. Bacteriol. 1989;171:5017–5024. doi: 10.1128/jb.171.9.5017-5024.1989. PubMed DOI PMC

Häuser R., Pech M., Kijek J., Yamamoto H., Titz B., Naeve F., Tovchigrechko A., Yamamoto K., Szaflarski W., Takeuchi N., et al. RsfA (YbeB) Proteins Are Conserved Ribosomal Silencing Factors. PLoS Genet. 2012;8:e1002815. doi: 10.1371/journal.pgen.1002815. PubMed DOI PMC

Handford J.I., Ize B., Buchanan G., Butland G.P., Greenblatt J., Emili A., Palmer T. Conserved Network of Proteins Essential for Bacterial Viability. J. Bacteriol. 2009;191:4732–4749. doi: 10.1128/JB.00136-09. PubMed DOI PMC

Chen J., To L., de Mets F., Luo X., Majdalani N., Tai C.-H., Gottesman S. A Fluorescence-Based Genetic Screen Reveals Diverse Mechanisms Silencing Small RNA Signaling in E. coli. Proc. Natl. Acad. Sci. USA. 2021;118:e2106964118. doi: 10.1073/pnas.2106964118. PubMed DOI PMC

Sperandeo P., Pozzi C., Dehò G., Polissi A. Non-Essential KDO Biosynthesis and New Essential Cell Envelope Biogenesis Genes in the Escherichia coli YrbG–YhbG Locus. Res. Microbiol. 2006;157:547–558. doi: 10.1016/j.resmic.2005.11.014. PubMed DOI

Dammel C.S., Noller H.F. Suppression of a Cold-Sensitive Mutation in 16S RRNA by Overexpression of a Novel Ribosome-Binding Factor, RbfA. Genes. Dev. 1995;9:626–637. doi: 10.1101/gad.9.5.626. PubMed DOI

Singh N., Bubunenko M., Smith C., Abbott D.M., Stringer A.M., Shi R., Court D.L., Wade J.T. SuhB Associates with Nus Factors to Facilitate 30S Ribosome Biogenesis in Escherichia coli. mBio. 2016;7:e00114-16. doi: 10.1128/mBio.00114-16. PubMed DOI PMC

Skoneczna A., Micialkiewicz A., Skoneczny M. Saccharomyces cerevisiae Hsp31p, a Stress Response Protein Conferring Protection against Reactive Oxygen Species. Free Radic. Biol. Med. 2007;42:1409–1420. doi: 10.1016/j.freeradbiomed.2007.01.042. PubMed DOI

Suliman M., Case K.C., Schmidtke M.W., Lazcano P., Onu C.J., Greenberg M.L. Inositol Depletion Regulates Phospholipid Metabolism and Activates Stress Signaling in HEK293T Cells. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids. 2022;1867:159137. doi: 10.1016/j.bbalip.2022.159137. PubMed DOI PMC

Hess D.C., Myers C.L., Huttenhower C., Hibbs M.A., Hayes A.P., Paw J., Clore J.J., Mendoza R.M., Luis B.S., Nislow C., et al. Computationally Driven, Quantitative Experiments Discover Genes Required for Mitochondrial Biogenesis. PLoS Genet. 2009;5:e1000407. doi: 10.1371/journal.pgen.1000407. PubMed DOI PMC

Soler N., Delagoutte E., Miron S., Facca C., Baïlle D., d’Autreaux B., Craescu G., Frapart Y., Mansuy D., Baldacci G., et al. Interaction between the Reductase Tah18 and Highly Conserved Fe-S Containing Dre2 C-terminus Is Essential for Yeast Viability. Mol. Microbiol. 2011;82:54–67. doi: 10.1111/j.1365-2958.2011.07788.x. PubMed DOI

Blum R., Beck A., Korte A., Stengel A., Letzel T., Lendzian K., Grill E. Function of Phytochelatin Synthase in Catabolism of Glutathione-Conjugates. Plant J. 2007;49:740–749. doi: 10.1111/j.1365-313X.2006.02993.x. PubMed DOI

Kariola T., Brader G., Helenius E., Li J., Heino P., Palva E.T. Early Responsive to Dehydration 15, a Negative Regulator of Abscisic Acid Responses in Arabidopsis. Plant Physiol. 2006;142:1559–1573. doi: 10.1104/pp.106.086223. PubMed DOI PMC

Du S.-Y., Zhang X.-F., Lu Z., Xin Q., Wu Z., Jiang T., Lu Y., Wang X.-F., Zhang D.-P. Roles of the Different Components of Magnesium Chelatase in Abscisic Acid Signal Transduction. Plant Mol. Biol. 2012;80:519–537. doi: 10.1007/s11103-012-9965-3. PubMed DOI PMC

Iwadate Y., Ramezanifard R., Golubeva Y.A., Fenlon L.A., Slauch J.M. PaeA (YtfL) Protects from Cadaverine and Putrescine Stress in Salmonella typhimurium and E. coli. Mol. Microbiol. 2021;115:1379–1394. doi: 10.1111/mmi.14686. PubMed DOI PMC

Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. STRING V11: Protein–Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC

Černý M., Habánová H., Berka M., Luklová M., Brzobohatý B. Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks. Int. J. Mol. Sci. 2018;19:2812. doi: 10.3390/ijms19092812. PubMed DOI PMC

Zhang H., Gong W., Wu S., Perrett S. Hsp70 in Redox Homeostasis. Cells. 2022;11:829. doi: 10.3390/cells11050829. PubMed DOI PMC

Beemster G.T.S., Baskin T.I. Analysis of Cell Division and Elongation Underlying the Developmental Acceleration of Root Growth in Arabidopsis thaliana 1. Plant Physiol. 1998;116:1515–1526. doi: 10.1104/pp.116.4.1515. PubMed DOI PMC

Černý M., Skalák J., Cerna H., Brzobohatý B. Advances in Purification and Separation of Posttranslationally Modified Proteins. J. Proteom. 2013;92:2–27. doi: 10.1016/j.jprot.2013.05.040. PubMed DOI

Gupta M., Johnson A.N.T., Cruz E.R., Costa E.J., Guest R.L., Li S.H.-J., Hart E.M., Nguyen T., Stadlmeier M., Bratton B.P., et al. Global Protein Turnover Quantification in Escherichia coli Reveals Cytoplasmic Recycling under Nitrogen Limitation. Nat. Commun. 2024;15:5890. doi: 10.1038/s41467-024-49920-8. PubMed DOI PMC

Kameniarová M., Černý M., Novák J., Ondrisková V., Hrušková L., Berka M., Vankova R., Brzobohatý B. Light Quality Modulates Plant Cold Response and Freezing Tolerance. Front. Plant Sci. 2022;13:887103. doi: 10.3389/fpls.2022.887103. PubMed DOI PMC

Kyle D.J., Behrens P.W., Gladue R.M., Syllaba A.H., Radmer R.J. Progress in Photosynthesis Research. Springer; Dordrecht, The Netherlands: 1987. Effects of Deuterium Oxide on Photosynthetic Light Reactions; pp. 593–596.

Polymenis M. Ribosomal Proteins: Mutant Phenotypes by the Numbers and Associated Gene Expression Changes. Open Biol. 2020;10:200114. doi: 10.1098/rsob.200114. PubMed DOI PMC

Mergner J., Frejno M., List M., Papacek M., Chen X., Chaudhary A., Samaras P., Richter S., Shikata H., Messerer M., et al. Mass-Spectrometry-Based Draft of the Arabidopsis Proteome. Nature. 2020;579:409–414. doi: 10.1038/s41586-020-2094-2. PubMed DOI

Ferreyra M.L.F., Pezza A., Biarc J., Burlingame A.L., Casati P. Plant L10 Ribosomal Proteins Have Different Roles during Development and Translation under Ultraviolet-B Stress. Plant Physiol. 2010;153:1878–1894. doi: 10.1104/pp.110.157057. PubMed DOI PMC

Wang J., Lan P., Gao H., Zheng L., Li W., Schmidt W. Expression Changes of Ribosomal Proteins in Phosphate- and Iron-Deficient Arabidopsis Roots Predict Stress-Specific Alterations in Ribosome Composition. BMC Genom. 2013;14:783. doi: 10.1186/1471-2164-14-783. PubMed DOI PMC

Gamm M., Peviani A., Honsel A., Snel B., Smeekens S., Hanson J. Increased Sucrose Levels Mediate Selective MRNA Translation in Arabidopsis. BMC Plant Biol. 2014;14:306. doi: 10.1186/s12870-014-0306-3. PubMed DOI PMC

Prerostova S., Černý M., Dobrev P.I., Motyka V., Hluskova L., Zupkova B., Gaudinova A., Knirsch V., Janda T., Brzobohatý B., et al. Light Regulates the Cytokinin-Dependent Cold Stress Responses in Arabidopsis. Front. Plant Sci. 2021;11:608711. doi: 10.3389/fpls.2020.608711. PubMed DOI PMC

Berková V., Kameniarová M., Ondrisková V., Berka M., Menšíková S., Kopecká R., Luklová M., Novák J., Spíchal L., Rashotte A.M., et al. Arabidopsis Response to Inhibitor of Cytokinin Degradation INCYDE: Modulations of Cytokinin Signaling and Plant Proteome. Plants. 2020;9:1563. doi: 10.3390/plants9111563. PubMed DOI PMC

Černý M., Kuklová A., Hoehenwarter W., Fragner L., Novák O.O., Rotková G., Jedelský P.L.P.L., Žáková K.K., Šmehilová M., Strnad M., et al. Proteome and Metabolome Profiling of Cytokinin Action in Arabidopsis Identifying Both Distinct and Similar Responses to Cytokinin Down- and Up-Regulation. J. Exp. Bot. 2013;64:4193–4206. doi: 10.1093/jxb/ert227. PubMed DOI PMC

Dufková H., Berka M., Luklová M., Rashotte A.M., Brzobohatý B., Černý M. Eggplant Germination Is Promoted by Hydrogen Peroxide and Temperature in an Independent but Overlapping Manner. Molecules. 2019;24:4270. doi: 10.3390/molecules24234270. PubMed DOI PMC

Berka M., Luklová M., Dufková H., Malých V., Novák J., Saiz-Fernández I., Rashotte A.M., Brzobohaty B., Cerny M. Barley Root Proteome and Metabolome in Response to Cytokinin and Abiotic Stimuli. Front. Plant Sci. 2020;11:1647. doi: 10.3389/fpls.2020.590337. PubMed DOI PMC

Majda M., Robert S. The Role of Auxin in Cell Wall Expansion. Int. J. Mol. Sci. 2018;19:951. doi: 10.3390/ijms19040951. PubMed DOI PMC

Li K., Yang F., Zhang G., Song S., Li Y., Ren D., Miao Y., Song C.-P. AIK1, A Mitogen-Activated Protein Kinase, Modulates Abscisic Acid Responses through the MKK5-MPK6 Kinase Cascade. Plant Physiol. 2017;173:1391–1408. doi: 10.1104/pp.16.01386. PubMed DOI PMC

Rihacek M., Kosaristanova L., Fialova T., Kuthanova M., Eichmeier A., Hakalova E., Cerny M., Berka M., Palkovicova J., Dolejska M., et al. Zinc Effects on Bacteria: Insights from Escherichia coli by Multi-Omics Approach. mSystems. 2023;8:e00733-23. doi: 10.1128/msystems.00733-23. PubMed DOI PMC

Kopecká R., Černý M. Xylem Sap Proteome Analysis Provides Insight into Root–Shoot Communication in Response to Flg22. Plants. 2024;13:1983. doi: 10.3390/plants13141983. PubMed DOI PMC

Dufková H., Berka M., Greplová M., Shejbalová Š., Hampejsová R., Luklová M., Domkářová J., Novák J., Kopačka V., Brzobohatý B., et al. The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora Infestans. Plants. 2022;11:61. doi: 10.3390/plants11010061. PubMed DOI PMC

Dorfer V., Strobl M., Winkler S., Mechtler K. MS Amanda 2.0: Advancements in the Standalone Implementation. Rapid Commun. Mass. Spectrom. 2021;35:e9088. doi: 10.1002/rcm.9088. PubMed DOI PMC

Černý M., Berka M., Dvořák M., Milenković I., Saiz-Fernández I., Brzobohatý B., Ďurkovič J. Defense Mechanisms Promoting Tolerance to Aggressive Phytophthora Species in Hybrid Poplar. Front. Plant Sci. 2022;13:1018272. doi: 10.3389/fpls.2022.1018272. PubMed DOI PMC

Dufková H., Berka M., Psota V., Brzobohatý B., Černý M. Environmental Impacts on Barley Grain Composition and Longevity. J. Exp. Bot. 2023;74:1609–1628. doi: 10.1093/jxb/erac498. PubMed DOI

Pang Z., Lu Y., Zhou G., Hui F., Xu L., Viau C., Spigelman A.F., MacDonald P.E., Wishart D.S., Li S., et al. MetaboAnalyst 6.0: Towards a Unified Platform for Metabolomics Data Processing, Analysis and Interpretation. Nucleic Acids Res. 2024;52:W398–W406. doi: 10.1093/nar/gkae253. PubMed DOI PMC

Chen Y.-J., Leung P.M., Wood J.L., Bay S.K., Hugenholtz P., Kessler A.J., Shelley G., Waite D.W., Franks A.E., Cook P.L.M., et al. Metabolic Flexibility Allows Bacterial Habitat Generalists to Become Dominant in a Frequently Disturbed Ecosystem. ISME J. 2021;15:2986–3004. doi: 10.1038/s41396-021-00988-w. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace