Xylem Sap Proteome Analysis Provides Insight into Root-Shoot Communication in Response to flg22
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AF-IGA2023-IP-051
Mendel University in Brno
8X23011
Ministry of Education Youth and Sports
PubMed
39065510
PubMed Central
PMC11281318
DOI
10.3390/plants13141983
PII: plants13141983
Knihovny.cz E-zdroje
- Klíčová slova
- HSP70, barley, biotic interaction, exudates, potato, protein extraction, proteomics,
- Publikační typ
- časopisecké články MeSH
Xylem sap proteomics provides crucial insights into plant defense and root-to-shoot communication. This study highlights the sensitivity and reproducibility of xylem sap proteome analyses, using a single plant per sample to track over 3000 proteins in two model crop plants, Solanum tuberosum and Hordeum vulgare. By analyzing the flg22 response, we identified immune response components not detectable through root or shoot analyses. Notably, we discovered previously unknown elements of the plant immune system, including calcium/calmodulin-dependent kinases and G-type lectin receptor kinases. Despite similarities in the metabolic pathways identified in the xylem sap of both plants, the flg22 response differed significantly: S. tuberosum exhibited 78 differentially abundant proteins, whereas H. vulgare had over 450. However, an evolutionarily conserved overlap in the flg22 response proteins was evident, particularly in the CAZymes and lipid metabolism pathways, where lipid transfer proteins and lipases showed a similar response to flg22. Additionally, many proteins without conserved signal sequences for extracellular targeting were found, such as members of the HSP70 family. Interestingly, the HSP70 response to flg22 was specific to the xylem sap proteome, suggesting a unique regulatory role in the extracellular space similar to that reported in mammalians.
Zobrazit více v PubMed
Koenig A.M., Hoffmann-Benning S. The interplay of phloem-mobile signals in plant development and stress response. Biosci. Rep. 2020;40:BSR20193329. doi: 10.1042/BSR20193329. PubMed DOI PMC
Lucas W.J., Groover A., Lichtenberger R., Furuta K., Yadav S., Helariutta Y., He X., Fukuda H., Kang J., Brady S.M., et al. The Plant Vascular System: Evolution, Development and Functions. J. Integr. Plant Biol. 2013;55:294–388. doi: 10.1111/jipb.12041. PubMed DOI
Taleski M., Jin M., Chapman K., Taylor K., Winning C., Frank M., Imin N., Djordjevic M.A. CEP hormones at the nexus of nutrient acquisition and allocation, root development, and plant–microbe interactions. J. Exp. Bot. 2024;75:538–552. doi: 10.1093/jxb/erad444. PubMed DOI PMC
Ladeynova M., Kuznetsova D., Mudrilov M., Vodeneev V. Integration of Electrical Signals and Phytohormones in the Control of Systemic Response. Int. J. Mol. Sci. 2023;24:847. doi: 10.3390/ijms24010847. PubMed DOI PMC
Houmani H., Corpas F.J. Can nutrients act as signals under abiotic stress? Plant Physiol. Biochem. 2024;206:108313. doi: 10.1016/j.plaphy.2023.108313. PubMed DOI
Gao Y.-Q., Morin H., Marcourt L., Yang T.-H., Wolfender J.-L., Farmer E.E. Chloride, glutathiones, and insect-derived elicitors introduced into the xylem trigger electrical signaling. Plant Physiol. 2024;194:1091–1103. doi: 10.1093/plphys/kiad584. PubMed DOI PMC
Rüscher D., Vasina V.V., Knoblauch J., Bellin L., Pommerrenig B., Alseekh S., Fernie A.R., Neuhaus H.E., Knoblauch M., Sonnewald U., et al. Symplasmic phloem loading and subcellular transport in storage roots are key factors for carbon allocation in cassava. Plant Physiol. 2024 doi: 10.1093/plphys/kiae298. in press . PubMed DOI
Akhiyarova G., Finkina E.I., Zhang K., Veselov D., Vafina G., Ovchinnikova T.V., Kudoyarova G. The Long-Distance Transport of Some Plant Hormones and Possible Involvement of Lipid-Binding and Transfer Proteins in Hormonal Transport. Cells. 2024;13:364. doi: 10.3390/cells13050364. PubMed DOI PMC
Shabala S., White R.G., Djordjevic M.A., Ruan Y.-L., Mathesius U. Root-to-shoot signalling: Integration of diverse molecules, pathways and functions. Funct. Plant Biol. 2016;43:87. doi: 10.1071/FP15252. PubMed DOI
De Schepper V., De Swaef T., Bauweraerts I., Steppe K. Phloem transport: A review of mechanisms and controls. J. Exp. Bot. 2013;64:4839–4850. doi: 10.1093/jxb/ert302. PubMed DOI
Garg V., Kühn C. What determines the composition of the phloem sap? Is there any selectivity filter for macromolecules entering the phloem sieve elements? Plant Physiol. Biochem. 2020;151:284–291. doi: 10.1016/j.plaphy.2020.03.023. PubMed DOI
Tolstyko E.A., Lezzhov A.A., Morozov S.Y., Solovyev A.G. Phloem transport of structured RNAs: A widening repertoire of trafficking signals and protein factors. Plant Sci. 2020;299:110602. doi: 10.1016/j.plantsci.2020.110602. PubMed DOI
Hu C., Ham B., El-shabrawi H.M., Alexander D., Zhang D., Ryals J., Lucas W.J. Proteomics and metabolomics analyses reveal the cucurbit sieve tube system as a complex metabolic space. Plant J. 2016;87:442–454. doi: 10.1111/tpj.13209. PubMed DOI
Brodersen C.R., Roddy A.B., Wason J.W., McElrone A.J. Functional Status of Xylem Through Time. Annu. Rev. Plant Biol. 2019;70:407–433. doi: 10.1146/annurev-arplant-050718-100455. PubMed DOI
Rodríguez-Celma J., Ceballos-Laita L., Grusak M.A., Abadía J., López-Millán A.-F. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes. BBA—Proteins Proteom. 2016;1864:991–1002. doi: 10.1016/j.bbapap.2016.03.014. PubMed DOI
Wheeldon C.D., Bennett T. There and back again: An evolutionary perspective on long-distance coordination of plant growth and development. Semin. Cell Dev. Biol. 2021;109:55–67. doi: 10.1016/j.semcdb.2020.06.011. PubMed DOI
Sakakibara H. Cytokinin biosynthesis and transport for systemic nitrogen signaling. Plant J. 2021;105:421–430. doi: 10.1111/tpj.15011. PubMed DOI
Mashiguchi K., Seto Y., Yamaguchi S. Strigolactone biosynthesis, transport and perception. Plant J. 2021;105:335–350. doi: 10.1111/tpj.15059. PubMed DOI
Pérez-Pérez J.G., Puertolas J., Albacete A., Dodd I.C. Alternation of wet and dry sides during partial rootzone drying irrigation enhances leaf ethylene evolution. Environ. Exp. Bot. 2020;176:104095. doi: 10.1016/j.envexpbot.2020.104095. DOI
Regnault T., Davière J.-M., Wild M., Sakvarelidze-Achard L., Heintz D., Carrera Bergua E., Lopez Diaz I., Gong F., Hedden P., Achard P. The gibberellin precursor GA12 acts as a long-distance growth signal in Arabidopsis. Nat. Plants. 2015;1:15073. doi: 10.1038/nplants.2015.73. PubMed DOI
Thorpe M.R., Ferrieri A.P., Herth M.M., Ferrieri R.A. 11C-imaging: Methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photoassimilate even after proton transport is decoupled. Planta. 2007;226:541. doi: 10.1007/s00425-007-0503-5. PubMed DOI
Park S.-W., Kaimoyo E., Kumar D., Mosher S., Klessig D.F. Methyl Salicylate Is a Critical Mobile Signal for Plant Systemic Acquired Resistance. Science. 2007;318:113–116. doi: 10.1126/science.1147113. PubMed DOI
Broussard L., Abadie C., Lalande J., Limami A.M., Lothier J., Tcherkez G. Phloem Sap Composition: What Have We Learnt from Metabolomics? Int. J. Mol. Sci. 2023;24:6917. doi: 10.3390/ijms24086917. PubMed DOI PMC
Aoki K., Suzui N., Fujimaki S., Dohmae N., Yonekura-Sakakibara K., Fujiwara T., Hayashi H., Yamaya T., Sakakibara H. Destination-Selective Long-Distance Movement of Phloem Proteins. Plant Cell. 2005;17:1801–1814. doi: 10.1105/tpc.105.031419. PubMed DOI PMC
Djordjevic M.A., Oakes M., Li D.X., Hwang C.H., Hocart C.H., Gresshoff P.M. The Glycine max Xylem Sap and Apoplast Proteome. J. Proteome Res. 2007;6:3771–3779. doi: 10.1021/pr0606833. PubMed DOI
Carella P., Merl-Pham J., Wilson D.C., Dey S., Hauck S.M., Vlot C., Cameron R.K. Comparative Proteomics Analysis of Arabidopsis Phloem Exudates Collected During the Induction of Systemic Acquired Resistance. Plant Physiol. 2016;171:1495–1510. doi: 10.1104/pp.16.00269. PubMed DOI PMC
Rep M., Dekker H.L., Vossen J.H., de Boer A.D., Houterman P.M., Speijer D., Back J.W., de Koster C.G., Cornelissen B.J.C. Mass Spectrometric Identification of Isoforms of PR Proteins in Xylem Sap of Fungus-Infected Tomato. Plant Physiol. 2002;130:904–917. doi: 10.1104/pp.007427. PubMed DOI PMC
Pu Z., Ino Y., Kimura Y., Tago A., Shimizu M., Natsume S., Sano Y., Fujimoto R., Kaneko K., Shea D.J., et al. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress. Front. Plant Sci. 2016;7:31. doi: 10.3389/fpls.2016.00031. PubMed DOI PMC
Abeysekara N.S., Bhattacharyya M.K. Analyses of the Xylem Sap Proteomes Identified Candidate Fusarium virguliforme Proteinacious Toxins. PLoS ONE. 2014;9:e93667. doi: 10.1371/journal.pone.0093667. PubMed DOI PMC
Floerl S., Druebert C., Majcherczyk A., Karlovsky P., Kües U., Polle A. Defence reactions in the apoplastic proteome of oilseed rape (Brassica napus var. napus) attenuate Verticillium longisporum growth but not disease symptoms. BMC Plant Biol. 2008;8:129. doi: 10.1186/1471-2229-8-129. PubMed DOI PMC
Zheng T., Haider M.S., Zhang K., Jia H., Fang J. Biological and functional properties of xylem sap extracted from grapevine (cv. Rosario bianco) Sci. Hortic. 2020;272:109563. doi: 10.1016/j.scienta.2020.109563. DOI
Notaguchi M., Okamoto S. Dynamics of long-distance signaling via plant vascular tissues. Front. Plant Sci. 2015;6:161. doi: 10.3389/fpls.2015.00161. PubMed DOI PMC
Kehr J., Buhtz A., Giavalisco P. Analysis of xylem sap proteins from Brassica napus. BMC Plant Biol. 2005;5:11. doi: 10.1186/1471-2229-5-11. PubMed DOI PMC
Buhtz A., Kolasa A., Arlt K., Walz C., Kehr J. Xylem sap protein composition is conserved among different plant species. Planta. 2004;219:610–618. doi: 10.1007/s00425-004-1259-9. PubMed DOI
Yadeta K.A.J., Thomma B.P.H. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 2013;4:97. doi: 10.3389/fpls.2013.00097. PubMed DOI PMC
Jelenska J., Davern S.M., Standaert R.F., Mirzadeh S., Greenberg J.T. Flagellin peptide flg22 gains access to long-distance trafficking in Arabidopsis via its receptor, FLS2. J. Exp. Bot. 2017;68:1769–1783. doi: 10.1093/jxb/erx060. PubMed DOI PMC
Moroz N., Tanaka K. FlgII-28 Is a Major Flagellin-Derived Defense Elicitor in Potato. Mol. Plant Microbe Interact. 2020;33:247–255. doi: 10.1094/MPMI-06-19-0164-R. PubMed DOI
Colaianni N.R., Parys K., Lee H.-S., Conway J.M., Kim N.H., Edelbacher N., Mucyn T.S., Madalinski M., Law T.F., Jones C.D., et al. A complex immune response to flagellin epitope variation in commensal communities. Cell Host Microbe. 2021;29:635–649.e9. doi: 10.1016/j.chom.2021.02.006. PubMed DOI
Buscaill P., Chandrasekar B., Sanguankiattichai N., Kourelis J., Kaschani F., Thomas E.L., Morimoto K., Kaiser M., Preston G.M., Ichinose Y., et al. Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides. Science. 2019;364:eaav0748. doi: 10.1126/science.aav0748. PubMed DOI
Hooper C.M., Castleden I.R., Tanz S.K., Aryamanesh N., Millar A.H. SUBA4: The interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res. 2017;45:D1064–D1074. doi: 10.1093/nar/gkw1041. PubMed DOI PMC
Hooper C.M., Castleden I.R., Aryamanesh N., Jacoby R.P., Millar A.H. Finding the Subcellular Location of Barley, Wheat, Rice and Maize Proteins: The Compendium of Crop Proteins with Annotated Locations (CropPAL) Plant Cell Physiol. 2016;57:e9. doi: 10.1093/pcp/pcv170. PubMed DOI
Ge S.X., Jung D., Yao R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–2629. doi: 10.1093/bioinformatics/btz931. PubMed DOI PMC
Simpson C., Thomas C., Findlay K., Bayer E., Maule A.J. An Arabidopsis GPI-Anchor Plasmodesmal Neck Protein with Callose Binding Activity and Potential to Regulate Cell-to-Cell Trafficking. Plant Cell. 2009;21:581–594. doi: 10.1105/tpc.108.060145. PubMed DOI PMC
Kim C., Park J., Choi G., Kim S., Vo K.T.X., Jeon J., Kang S., Lee Y. A rice gene encoding glycosyl hydrolase plays contrasting roles in immunity depending on the type of pathogens. Mol. Plant Pathol. 2022;23:400–416. doi: 10.1111/mpp.13167. PubMed DOI PMC
Schimoler-O’Rourke R., Richardson M., Selitrennikoff C.P. Zeamatin Inhibits Trypsin and α-Amylase Activities. Appl. Environ. Microbiol. 2001;67:2365–2366. doi: 10.1128/AEM.67.5.2365-2366.2001. PubMed DOI PMC
Jia R., Yu L., Chen J., Hu L., Cao S., Wang Y. Characterization of the Fasciclin-like arabinogalactan gene family in Brassica napus and the negative regulatory role of BnFLA39 in response to clubroot disease stress. Ind. Crop Prod. 2023;196:116400. doi: 10.1016/j.indcrop.2023.116400. DOI
Sun L., Dong S., Ge Y., Fonseca J.P., Robinson Z.T., Mysore K.S., Mehta P. DiVenn: An Interactive and Integrated Web-Based Visualization Tool for Comparing Gene Lists. Front. Genet. 2019;10:421. doi: 10.3389/fgene.2019.00421. PubMed DOI PMC
Pan L., Berka M., Černý M., Novák J., Luklová M., Brzobohatý B., Saiz-Fernández I. Cytokinin Deficiency Alters Leaf Proteome and Metabolome during Effector-Triggered Immunity in Arabidopsis thaliana Plants. Plants. 2022;11:2123. doi: 10.3390/plants11162123. PubMed DOI PMC
Narváez-Barragán D.A., Tovar-Herrera O.E., Guevara-García A., Serrano M., Martinez-Anaya C. Mechanisms of plant cell wall surveillance in response to pathogens, cell wall-derived ligands and the effect of expansins to infection resistance or susceptibility. Front. Plant Sci. 2022;13:969343. doi: 10.3389/fpls.2022.969343. PubMed DOI PMC
Raiola A., Lionetti V., Elmaghraby I., Immerzeel P., Mellerowicz E.J., Salvi G., Cervone F., Bellincampi D. Pectin Methylesterase Is Induced in Arabidopsis upon Infection and Is Necessary for a Successful Colonization by Necrotrophic Pathogens. Mol. Plant Microbe Interact. 2011;24:432–440. doi: 10.1094/MPMI-07-10-0157. PubMed DOI
Zhou X., Gao H., Zhang X., Khashi u Rahman M., Mazzoleni S., Du M., Wu F. Plant extracellular self-DNA inhibits growth and induces immunity via the jasmonate signaling pathway. Plant Physiol. 2023;192:2475–2491. doi: 10.1093/plphys/kiad195. PubMed DOI PMC
Pernis M., Salaj T., Bellová J., Danchenko M., Baráth P., Klubicová K. Secretome analysis revealed that cell wall remodeling and starch catabolism underlie the early stages of somatic embryogenesis in Pinus nigra. Front. Plant Sci. 2023;14:1225424. doi: 10.3389/fpls.2023.1225424. PubMed DOI PMC
Batailler B., Lemaître T., Vilaine F., Sanchez C., Renard D., Cayla T., Beneteau J., Dinant S. Soluble and filamentous proteins in Arabidopsis sieve elements. Plant Cell Environ. 2012;35:1258–1273. doi: 10.1111/j.1365-3040.2012.02487.x. PubMed DOI
Zimmermann M.R., Knauer T., Furch A.C.U. Phytoplasmas. Methods in Molecular Biology. Humana Press; New York, NY, USA: 2019. Collection of Phloem Sap in Phytoplasma-Infected Plants; pp. 291–299. PubMed DOI
Liu Y., Lin T., Valencia M.V., Zhang C., Lv Z. Unraveling the Roles of Vascular Proteins Using Proteomics. Molecules. 2021;26:667. doi: 10.3390/molecules26030667. PubMed DOI PMC
Maricchiolo E., Panfili E., Pompa A., De Marchis F., Bellucci M., Pallotta M.T. Unconventional Pathways of Protein Secretion: Mammals vs. Plants. Front. Cell Dev. Biol. 2022;10:895853. doi: 10.3389/fcell.2022.895853. PubMed DOI PMC
Zipfel C., Robatzek S., Navarro L., Oakeley E.J., Jones J.D.G., Felix G., Boller T. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature. 2004;428:764–767. doi: 10.1038/nature02485. PubMed DOI
Takai R., Isogai A., Takayama S., Che F.-S. Analysis of Flagellin Perception Mediated by Flg22 Receptor OsFLS2 in Rice. Mol. Plant Microbe Interact. 2008;21:1635–1642. doi: 10.1094/MPMI-21-12-1635. PubMed DOI
Wei Y., Balaceanu A., Rufian J.S., Segonzac C., Zhao A., Morcillo R.J.L., Macho A.P. An immune receptor complex evolved in soybean to perceive a polymorphic bacterial flagellin. Nat. Commun. 2020;11:3763. doi: 10.1038/s41467-020-17573-y. PubMed DOI PMC
Hind S.R., Strickler S.R., Boyle P.C., Dunham D.M., Bao Z., O’Doherty I.M., Baccile J.A., Hoki J.S., Viox E.G., Clarke C.R., et al. Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nat. Plants. 2016;2:16128. doi: 10.1038/nplants.2016.128. PubMed DOI
Murakami T., Katsuragi Y., Hirai H., Wataya K., Kondo M., Che F.-S. Distribution of flagellin CD2-1, flg22, and flgii-28 recognition systems in plant species and regulation of plant immune responses through these recognition systems. Biosci. Biotechnol. Biochem. 2022;86:490–501. doi: 10.1093/bbb/zbac007. PubMed DOI
Sun Y., Qiao Z., Muchero W., Chen J.-G. Lectin Receptor-like Kinases: The Sensor and Mediator at the Plant Cell Surface. Front. Plant Sci. 2020;11:596301. doi: 10.3389/fpls.2020.596301. PubMed DOI PMC
Yip Delormel T., Boudsocq M. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytol. 2019;224:585–604. doi: 10.1111/nph.16088. PubMed DOI
Lampl N., Alkan N., Davydov O., Fluhr R. Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis. Plant J. 2013;74:498–510. doi: 10.1111/tpj.12141. PubMed DOI
Tunc-Ozdemir M., Jones A.M. BRL3 and AtRGS1 cooperate to fine tune growth inhibition and ROS activation. PLoS ONE. 2017;12:e0177400. doi: 10.1371/journal.pone.0177400. PubMed DOI PMC
Matsui S., Noda S., Kuwata K., Nomoto M., Tada Y., Shinohara H., Matsubayashi Y. Arabidopsis SBT5.2 and SBT1.7 subtilases mediate C-Terminal Cleavage of flg22 epitope from bacterial flagellin. Nat. Commun. 2024;15:3762. doi: 10.1038/s41467-024-48108-4. PubMed DOI PMC
Gao H., Ma K., Ji G., Pan L., Zhou Q. Lipid transfer proteins involved in plant–pathogen interactions and their molecular mechanisms. Mol. Plant Pathol. 2022;23:1815–1829. doi: 10.1111/mpp.13264. PubMed DOI PMC
Berka M., Kopecká R., Berková V., Brzobohatý B., Černý M. Regulation of heat shock proteins 70 and their role in plant immunity. J. Exp. Bot. 2022;73:1894–1909. doi: 10.1093/jxb/erab549. PubMed DOI PMC
Lopez V., Cauvi D.M., Arispe N., De Maio A. Bacterial Hsp70 (DnaK) and mammalian Hsp70 interact differently with lipid membranes. Cell Stress. Chaperones. 2016;21:609–616. doi: 10.1007/s12192-016-0685-5. PubMed DOI PMC
Dufková H., Berka M., Psota V., Brzobohatý B., Černý M. Environmental impacts on barley grain composition and longevity. J. Exp. Bot. 2023;74:1609–1628. doi: 10.1093/jxb/erac498. PubMed DOI
Berková V., Berka M., Kameniarová M., Kopecká R., Kuzmenko M., Shejbalová Š., Abramov D., Čičmanec P., Frejlichová L., Jan N., et al. Salicylic Acid Treatment and Its Effect on Seed Yield and Seed Molecular Composition of Pisum sativum under Abiotic Stress. Int. J. Mol. Sci. 2023;24:5454. doi: 10.3390/ijms24065454. PubMed DOI PMC
Dorfer V., Pichler P., Stranzl T., Stadlmann J., Taus T., Winkler S., Mechtler K. MS Amanda, a Universal Identification Algorithm Optimized for High Accuracy Tandem Mass Spectra. J. Proteome Res. 2014;13:3679–3684. doi: 10.1021/pr500202e. PubMed DOI PMC
Kong A.T., Leprevost F.V., Avtonomov D.M., Mellacheruvu D., Nesvizhskii A.I. MSFragger: Ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods. 2017;14:513–520. doi: 10.1038/nmeth.4256. PubMed DOI PMC
Dufková H., Berka M., Greplová M., Shejbalová Š., Hampejsová R., Luklová M., Domkářová J., Novák J., Kopačka V., Brzobohatý B., et al. The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora infestans. Plants. 2022;11:61. doi: 10.3390/plants11010061. PubMed DOI PMC
Perez-Riverol Y., Bai J., Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., Kundu D.J., Prakash A., Frericks-Zipper A., Eisenacher M., et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC
Pang Z., Lu Y., Zhou G., Hui F., Xu L., Viau C., Spigelman A.F., MacDonald P.E., Wishart D.S., Li S., et al. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 2024;52:W398–W406. doi: 10.1093/nar/gkae253. PubMed DOI PMC
Liebermeister W., Noor E., Flamholz A., Davidi D., Bernhardt J., Milo R. Visual account of protein investment in cellular functions. Proc. Natl. Acad. Sci. USA. 2014;111:8488–8493. doi: 10.1073/pnas.1314810111. PubMed DOI PMC
Divergent Molecular Responses to Heavy Water in Arabidopsis thaliana Compared to Bacteria and Yeast
New Horizons in Plant-Microbe Interactions