Molecular Hydrogen Effectively Heals Alkali-Injured Cornea via Suppression of Oxidative Stress

. 2017 ; 2017 () : 8906027. [epub] 20170316

Status odvoláno Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, publikace stažené z tisku

Perzistentní odkaz   https://www.medvik.cz/link/pmid28400915

The aim of this study was to examine the effect of molecular hydrogen (H2) on the healing of alkali-injured cornea. The effects of the solution of H2 in phosphate buffered saline (PBS) or PBS alone topically applied on the alkali-injured rabbit cornea with 0.25 M NaOH were investigated using immunohistochemical and biochemical methods. Central corneal thickness taken as an index of corneal hydration was measured with an ultrasonic pachymeter. Results show that irrigation of the damaged eyes with H2 solution immediately after the injury and then within next five days renewed corneal transparency lost after the injury and reduced corneal hydration increased after the injury to physiological levels within ten days after the injury. In contrast, in injured corneas treated with PBS, the transparency of damaged corneas remained lost and corneal hydration elevated. Later results-on day 20 after the injury-showed that in alkali-injured corneas treated with H2 solution the expression of proinflammatory cytokines, peroxynitrite, detected by nitrotyrosine residues (NT), and malondialdehyde (MDA) expressions were very low or absent compared to PBS treated injured corneas, where NT and MDA expressions were present. In conclusion, H2 solution favorably influenced corneal healing after alkali injury via suppression of oxidative stress.

Odvolání publikace

PubMed

Zobrazit více v PubMed

Cejkova J., Stipek S., Crkovska J., Ardan T. Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays. Histochemical and biochemical study. Histology and Histopathology. 2000;15(4):1043–1050. PubMed

Čejková J., Štípek S., Crkovská J., Ardan T., Midelfart A. Reactive oxygen species (ROS)-generating oxidases in the normal rabbit cornea and their involvement in the corneal damage evoked by UVB rays. Histology and Histopathology. 2001;16(2):523–533. PubMed

Čejková J., Štípek S., Crkovská J., et al. UV rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage. Physiological Research. 2004;53(1):1–10. PubMed

Lodovici M., Raimondi L., Guglielmi F., Gemignani S., Dolara P. Protection against ultraviolet B-induced oxidative DNA damage in rabbit corneal-derived cells (SIRC) by 4-coumaric acid. Toxicology. 2003;184(2-3):141–147. doi: 10.1016/S0300-483X(02)00572-3. PubMed DOI

Lodovici M., Caldini S., Morbidelli L., Akpan V., Ziche M., Dolara P. Protective effect of 4-coumarin acid from UVB ray damage in the rabbit eye. Toxicology. 2009;255(1-2):1–5. doi: 10.1016/j.tox.2008.09.011. PubMed DOI

Kubota M., Shimmura S., Kubota S., et al. Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model. Investigative Ophthalmology and Visual Science. 2011;52(1):427–433. doi: 10.1167/iovs.10-6167. PubMed DOI

Cejka C., Holan V., Trosan P., Zajicova A., Javorkova E., Cejkova J. The favorable effect of mesenchymal stem cell treatment on the antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. Oxidative Medicine and Cellular Longevity. 2016;2016:12. doi: 10.1155/2016/5843809.5843809 PubMed DOI PMC

Saika S., Uenoyama K., Hiroi K., Tanioka H., Takase K., Hikita M. Ascorbic acid phosphate ester and wound healing in rabbit corneal alkali burns: epithelial basement membrane and stroma. Graefe's Archive for Clinical and Experimental Ophthalmology. 1993;231(4):221–227. doi: 10.1007/bf00918845. PubMed DOI

Alio J. L., Ayala M. J., Mulet M. E., Artola A., Ruiz J. M., Bellot J. Antioxidant therapy in the treatment of experimental acute corneal inflammation. Ophthalmic Research. 1995;27(3):136–143. PubMed

Ohta S. Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications. Current Pharmaceutical Design. 2011;17(22):2241–2252. doi: 10.2174/138161211797052664. PubMed DOI PMC

Ohsawa I., Ishikawa M., Takahashi K., et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Medicine. 2007;13(6):688–694. doi: 10.1038/nm1577. PubMed DOI

Cejka C., Luyckx J., Cejková J. Central corneal thickness considered an index of corneal hydration of the UVB irradiated rabbit cornea as influenced by UVB absorber. Physiological Research. 2012;61(3):299–306. PubMed

Trosan P., Svobodova E., Chudickova M., Krulova M., Zajicova A., Holan V. The key role of insulin-like growth factor i in limbal stem cell differentiation and the corneal wound-healing process. Stem Cells and Development. 2012;21(18):3341–3350. doi: 10.1089/scd.2012.0180. PubMed DOI PMC

Wakamatsu T. H., Dogru M., Tsubota K. Tearful relations: oxidative stress, inflammation and eye diseases. Arquivos Brasileiros de Oftalmologia. 2008;71(7):72–79. PubMed

Jester J. V., Brown D., Pappa A., Vasiliou V. Myofibroblast differentiation modulates keratocyte crystallin protein expression, concentration, and cellular light scattering. Investigative Ophthalmology and Visual Science. 2012;53(2):770–778. doi: 10.1167/iovs.11-9092. PubMed DOI PMC

Jester J. V., Petroll W. M., Cavanagh H. D. Corneal stromal wound healing in refractive surgery: the role of myofibroblasts. Progress in Retinal and Eye Research. 1999;18(3):311–356. doi: 10.1016/s1350-9462(98)00021-4. PubMed DOI

Wilson S. E. Corneal myofibroblast biology and pathobiology: generation, persistence, and transparency. Experimental Eye Research. 2012;99(3):78–88. doi: 10.1016/j.exer.2012.03.018. PubMed DOI PMC

Ishizaki M., Zhu G., Haseba T., Shafer S. S., Kao W. W.-Y. Expression of collagen I, smooth muscle α-actin, and vimentin during the healing of alkali-burned and lacerated corneas. Investigative Ophthalmology and Visual Science. 1993;34(12):3320–3328. PubMed

Dreier B., Thomasy S. M., Mendonsa R., Raghunathan V. K., Russell P., Murphy C. J. Substratum compliance modulates corneal fibroblast to myofibroblast transformation. Investigative Ophthalmology and Visual Science. 2013;54(8):5901–5907. doi: 10.1167/iovs.12-11575. PubMed DOI PMC

Yang Y., Wang Z., Yang H., et al. TRPV1 potentiates TGFβ-induction of corneal myofibroblast development through an oxidative stress-mediated p38-SMAD2 signaling loop. PLoS ONE. 2013;8(10) doi: 10.1371/journal.pone.0077300.e77300 PubMed DOI PMC

Luckett-Chastain L. R., Gallucci R. M. Interleukin (IL)-6 modulates transforming growth factor-β expression in skin and dermal fibroblasts from IL-6-deficient mice. British Journal of Dermatology. 2009;161(2):237–248. doi: 10.1111/j.1365-2133.2009.09215.x. PubMed DOI PMC

Zheng Y., Zhu D. Molecular hydrogen therapy ameliorates organ damage induced by sepsis. Oxidative Medicine and Cellular Longevity. 2016;2016:6. doi: 10.1155/2016/5806057.5806057 PubMed DOI PMC

Wu J., Chitapanarux T., Chen Y., Soon R. K., Yee H. F., Jr. Intestinal myofibroblasts produce nitric oxide in response to combinatorial cytokine stimulation. Journal of Cellular Physiology. 2013;228(3):572–580. doi: 10.1002/jcp.24164. PubMed DOI PMC

Buddi R., Lin B., Atilano S. R., Zorapapel N. C., Kenney M. C., Brown D. J. Evidence of oxidative stress in human corneal diseases. Journal of Histochemistry and Cytochemistry. 2002;50(3):341–351. doi: 10.1177/002215540205000306. PubMed DOI

Sumioka T., Ikeda K., Okada Y., Yamanaka O., Kitano A., Saika S. Inhibitory effect of blocking TGF-β/Smad signal on injury-induced fibrosis of corneal endothelium. Molecular Vision. 2008;14(6):2272–2281. PubMed PMC

Setsukinai K.-I., Urano Y., Kakinuma K., Majima H. J., Nagano T. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. Journal of Biological Chemistry. 2003;278(5):3170–3175. doi: 10.1074/jbc.M209264200. PubMed DOI

Del Rio D., Stewart A. J., Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases. 2005;15(4):316–328. doi: 10.1016/j.numecd.2005.05.003. PubMed DOI

Oharazawa H., Igarashi T., Yokota T., et al. Protection of the retina by rapid diffusion of hydrogen: administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Investigative Ophthalmology and Visual Science. 2010;51(1):487–492. doi: 10.1167/iovs.09-4089. PubMed DOI

Huang L., Zhao S., Zhang J. H., Sun X. Hydrogen saline treatment attenuates hyperoxia-induced retinopathy by inhibition of oxidative stress and reduction of VEGF expression. Ophthalmic Research. 2012;47(3):122–127. doi: 10.1159/000329600. PubMed DOI

Yokota T., Kamimura N., Igarashi T., Takahashi H., Ohta S., Oharazawa H. Protective effect of molecular hydrogen against oxidative stress caused by peroxynitrite derived from nitric oxide in rat retina. Clinical and Experimental Ophthalmology. 2015;43(6):568–577. doi: 10.1111/ceo.12525. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...