Molecular Hydrogen Effectively Heals Alkali-Injured Cornea via Suppression of Oxidative Stress
Status odvoláno Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, publikace stažené z tisku
PubMed
28400915
PubMed Central
PMC5376456
DOI
10.1155/2017/8906027
Knihovny.cz E-zdroje
- MeSH
- aktiny metabolismus MeSH
- cytokiny metabolismus MeSH
- exprese genu účinky léků MeSH
- hydroxid sodný toxicita MeSH
- imunohistochemie MeSH
- interleukin-1beta genetika metabolismus MeSH
- keratin-12 metabolismus MeSH
- keratin-3 metabolismus MeSH
- králíci MeSH
- kyselina peroxydusitá metabolismus MeSH
- malondialdehyd metabolismus MeSH
- modely nemocí na zvířatech MeSH
- oxidační stres účinky léků MeSH
- poranění rohovky etiologie metabolismus patologie MeSH
- rohovka metabolismus patologie MeSH
- vaskulární endoteliální růstový faktor A genetika metabolismus MeSH
- vodík farmakologie MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- publikace stažené z tisku MeSH
- Názvy látek
- aktiny MeSH
- cytokiny MeSH
- hydroxid sodný MeSH
- interleukin-1beta MeSH
- keratin-12 MeSH
- keratin-3 MeSH
- kyselina peroxydusitá MeSH
- malondialdehyd MeSH
- vaskulární endoteliální růstový faktor A MeSH
- vodík MeSH
The aim of this study was to examine the effect of molecular hydrogen (H2) on the healing of alkali-injured cornea. The effects of the solution of H2 in phosphate buffered saline (PBS) or PBS alone topically applied on the alkali-injured rabbit cornea with 0.25 M NaOH were investigated using immunohistochemical and biochemical methods. Central corneal thickness taken as an index of corneal hydration was measured with an ultrasonic pachymeter. Results show that irrigation of the damaged eyes with H2 solution immediately after the injury and then within next five days renewed corneal transparency lost after the injury and reduced corneal hydration increased after the injury to physiological levels within ten days after the injury. In contrast, in injured corneas treated with PBS, the transparency of damaged corneas remained lost and corneal hydration elevated. Later results-on day 20 after the injury-showed that in alkali-injured corneas treated with H2 solution the expression of proinflammatory cytokines, peroxynitrite, detected by nitrotyrosine residues (NT), and malondialdehyde (MDA) expressions were very low or absent compared to PBS treated injured corneas, where NT and MDA expressions were present. In conclusion, H2 solution favorably influenced corneal healing after alkali injury via suppression of oxidative stress.
Zobrazit více v PubMed
Cejkova J., Stipek S., Crkovska J., Ardan T. Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays. Histochemical and biochemical study. Histology and Histopathology. 2000;15(4):1043–1050. PubMed
Čejková J., Štípek S., Crkovská J., Ardan T., Midelfart A. Reactive oxygen species (ROS)-generating oxidases in the normal rabbit cornea and their involvement in the corneal damage evoked by UVB rays. Histology and Histopathology. 2001;16(2):523–533. PubMed
Čejková J., Štípek S., Crkovská J., et al. UV rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage. Physiological Research. 2004;53(1):1–10. PubMed
Lodovici M., Raimondi L., Guglielmi F., Gemignani S., Dolara P. Protection against ultraviolet B-induced oxidative DNA damage in rabbit corneal-derived cells (SIRC) by 4-coumaric acid. Toxicology. 2003;184(2-3):141–147. doi: 10.1016/S0300-483X(02)00572-3. PubMed DOI
Lodovici M., Caldini S., Morbidelli L., Akpan V., Ziche M., Dolara P. Protective effect of 4-coumarin acid from UVB ray damage in the rabbit eye. Toxicology. 2009;255(1-2):1–5. doi: 10.1016/j.tox.2008.09.011. PubMed DOI
Kubota M., Shimmura S., Kubota S., et al. Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model. Investigative Ophthalmology and Visual Science. 2011;52(1):427–433. doi: 10.1167/iovs.10-6167. PubMed DOI
Cejka C., Holan V., Trosan P., Zajicova A., Javorkova E., Cejkova J. The favorable effect of mesenchymal stem cell treatment on the antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. Oxidative Medicine and Cellular Longevity. 2016;2016:12. doi: 10.1155/2016/5843809.5843809 PubMed DOI PMC
Saika S., Uenoyama K., Hiroi K., Tanioka H., Takase K., Hikita M. Ascorbic acid phosphate ester and wound healing in rabbit corneal alkali burns: epithelial basement membrane and stroma. Graefe's Archive for Clinical and Experimental Ophthalmology. 1993;231(4):221–227. doi: 10.1007/bf00918845. PubMed DOI
Alio J. L., Ayala M. J., Mulet M. E., Artola A., Ruiz J. M., Bellot J. Antioxidant therapy in the treatment of experimental acute corneal inflammation. Ophthalmic Research. 1995;27(3):136–143. PubMed
Ohta S. Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications. Current Pharmaceutical Design. 2011;17(22):2241–2252. doi: 10.2174/138161211797052664. PubMed DOI PMC
Ohsawa I., Ishikawa M., Takahashi K., et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Medicine. 2007;13(6):688–694. doi: 10.1038/nm1577. PubMed DOI
Cejka C., Luyckx J., Cejková J. Central corneal thickness considered an index of corneal hydration of the UVB irradiated rabbit cornea as influenced by UVB absorber. Physiological Research. 2012;61(3):299–306. PubMed
Trosan P., Svobodova E., Chudickova M., Krulova M., Zajicova A., Holan V. The key role of insulin-like growth factor i in limbal stem cell differentiation and the corneal wound-healing process. Stem Cells and Development. 2012;21(18):3341–3350. doi: 10.1089/scd.2012.0180. PubMed DOI PMC
Wakamatsu T. H., Dogru M., Tsubota K. Tearful relations: oxidative stress, inflammation and eye diseases. Arquivos Brasileiros de Oftalmologia. 2008;71(7):72–79. PubMed
Jester J. V., Brown D., Pappa A., Vasiliou V. Myofibroblast differentiation modulates keratocyte crystallin protein expression, concentration, and cellular light scattering. Investigative Ophthalmology and Visual Science. 2012;53(2):770–778. doi: 10.1167/iovs.11-9092. PubMed DOI PMC
Jester J. V., Petroll W. M., Cavanagh H. D. Corneal stromal wound healing in refractive surgery: the role of myofibroblasts. Progress in Retinal and Eye Research. 1999;18(3):311–356. doi: 10.1016/s1350-9462(98)00021-4. PubMed DOI
Wilson S. E. Corneal myofibroblast biology and pathobiology: generation, persistence, and transparency. Experimental Eye Research. 2012;99(3):78–88. doi: 10.1016/j.exer.2012.03.018. PubMed DOI PMC
Ishizaki M., Zhu G., Haseba T., Shafer S. S., Kao W. W.-Y. Expression of collagen I, smooth muscle α-actin, and vimentin during the healing of alkali-burned and lacerated corneas. Investigative Ophthalmology and Visual Science. 1993;34(12):3320–3328. PubMed
Dreier B., Thomasy S. M., Mendonsa R., Raghunathan V. K., Russell P., Murphy C. J. Substratum compliance modulates corneal fibroblast to myofibroblast transformation. Investigative Ophthalmology and Visual Science. 2013;54(8):5901–5907. doi: 10.1167/iovs.12-11575. PubMed DOI PMC
Yang Y., Wang Z., Yang H., et al. TRPV1 potentiates TGFβ-induction of corneal myofibroblast development through an oxidative stress-mediated p38-SMAD2 signaling loop. PLoS ONE. 2013;8(10) doi: 10.1371/journal.pone.0077300.e77300 PubMed DOI PMC
Luckett-Chastain L. R., Gallucci R. M. Interleukin (IL)-6 modulates transforming growth factor-β expression in skin and dermal fibroblasts from IL-6-deficient mice. British Journal of Dermatology. 2009;161(2):237–248. doi: 10.1111/j.1365-2133.2009.09215.x. PubMed DOI PMC
Zheng Y., Zhu D. Molecular hydrogen therapy ameliorates organ damage induced by sepsis. Oxidative Medicine and Cellular Longevity. 2016;2016:6. doi: 10.1155/2016/5806057.5806057 PubMed DOI PMC
Wu J., Chitapanarux T., Chen Y., Soon R. K., Yee H. F., Jr. Intestinal myofibroblasts produce nitric oxide in response to combinatorial cytokine stimulation. Journal of Cellular Physiology. 2013;228(3):572–580. doi: 10.1002/jcp.24164. PubMed DOI PMC
Buddi R., Lin B., Atilano S. R., Zorapapel N. C., Kenney M. C., Brown D. J. Evidence of oxidative stress in human corneal diseases. Journal of Histochemistry and Cytochemistry. 2002;50(3):341–351. doi: 10.1177/002215540205000306. PubMed DOI
Sumioka T., Ikeda K., Okada Y., Yamanaka O., Kitano A., Saika S. Inhibitory effect of blocking TGF-β/Smad signal on injury-induced fibrosis of corneal endothelium. Molecular Vision. 2008;14(6):2272–2281. PubMed PMC
Setsukinai K.-I., Urano Y., Kakinuma K., Majima H. J., Nagano T. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. Journal of Biological Chemistry. 2003;278(5):3170–3175. doi: 10.1074/jbc.M209264200. PubMed DOI
Del Rio D., Stewart A. J., Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases. 2005;15(4):316–328. doi: 10.1016/j.numecd.2005.05.003. PubMed DOI
Oharazawa H., Igarashi T., Yokota T., et al. Protection of the retina by rapid diffusion of hydrogen: administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Investigative Ophthalmology and Visual Science. 2010;51(1):487–492. doi: 10.1167/iovs.09-4089. PubMed DOI
Huang L., Zhao S., Zhang J. H., Sun X. Hydrogen saline treatment attenuates hyperoxia-induced retinopathy by inhibition of oxidative stress and reduction of VEGF expression. Ophthalmic Research. 2012;47(3):122–127. doi: 10.1159/000329600. PubMed DOI
Yokota T., Kamimura N., Igarashi T., Takahashi H., Ohta S., Oharazawa H. Protective effect of molecular hydrogen against oxidative stress caused by peroxynitrite derived from nitric oxide in rat retina. Clinical and Experimental Ophthalmology. 2015;43(6):568–577. doi: 10.1111/ceo.12525. PubMed DOI
The Healing of Oxidative Injuries with Trehalose in UVB-Irradiated Rabbit Corneas