The Healing of Oxidative Injuries with Trehalose in UVB-Irradiated Rabbit Corneas
Status odvoláno Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, publikace stažené z tisku
PubMed
31641422
PubMed Central
PMC6770344
DOI
10.1155/2019/1857086
Knihovny.cz E-zdroje
- MeSH
- hojení ran účinky léků účinky záření MeSH
- interleukin-1beta metabolismus MeSH
- keratiny metabolismus MeSH
- králíci MeSH
- oxidační stres * účinky léků účinky záření MeSH
- poranění rohovky farmakoterapie MeSH
- poškození DNA MeSH
- reaktivní formy kyslíku metabolismus MeSH
- reepitalizace účinky léků účinky záření MeSH
- rohovka účinky léků patologie účinky záření MeSH
- synthasa oxidu dusnatého, typ II metabolismus MeSH
- trehalosa farmakologie terapeutické užití MeSH
- tyrosin analogy a deriváty metabolismus MeSH
- ultrafialové záření * MeSH
- vaskulární endoteliální růstový faktor A metabolismus MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- publikace stažené z tisku MeSH
- Názvy látek
- 3-nitrotyrosine MeSH Prohlížeč
- interleukin-1beta MeSH
- keratiny MeSH
- reaktivní formy kyslíku MeSH
- synthasa oxidu dusnatého, typ II MeSH
- trehalosa MeSH
- tyrosin MeSH
- vaskulární endoteliální růstový faktor A MeSH
Our previous research revealed that trehalose, a nonreducing disaccharide of glucose and an important stress responsive factor, proved to have anti-inflammatory, antiapoptotic, and particularly antioxidant properties in UVB-irradiated corneas. Trehalose reduced oxidative stress in corneas induced by UVB irradiation, by means of a decrease in the antioxidant/prooxidant imbalance in the corneal epithelium. In this study, we demonstrate that trehalose of 3% or 6% concentration in eye drops directly decreases oxidative stress in UVB-irradiated corneas, by removing the excessive amount of reactive oxygen species (ROS). Trehalose drops applied on corneas during UVB irradiation once daily for four days resulted in a reduction or even absence of the oxidative stress, DNA damage, and peroxynitrite formation (detected by nitrotyrosine residues), seen in buffer-treated corneas. Furthermore, trehalose treatment applied curatively after repeated irradiation for the subsequent fourteen days led to the renewal of corneal transparency and significant suppression or even absence of neovascularization. This was in contrast to buffer-treated irradiated corneas, where the intracorneal inflammation was developed and the untransparent corneas were vascularized. In conclusion, the treatment of UVB-irradiated corneas with trehalose eye drops removed the excessive amount of ROS in the corneal epithelium, leading to the suppression of oxidative stress and favorable corneal healing. The 6% trehalose showed a higher intensive antioxidant effect.
Faculty of Natural Science Charles University Vinicna 7 12843 Prague 2 Czech Republic
Laboratoires Thea 12 Rue Louis Bleriot 63000 Clermont Ferrand France
Zobrazit více v PubMed
Cejková J., Stípek S., Crkovská J., et al. UV rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage. Physiological Research. 2004;53(1):1–10. PubMed
Lennikov A., Kitaichi N., Fukase R., et al. Amelioration of ultraviolet-induced photokeratitis in mice treated with astaxanthin eye drops. Molecular Vision. 2012;18(4):455–464. PubMed PMC
Cejková J., Stípek S., Crkovská J., Ardan T. Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays, Histochemical and biochemical study. Histology and Histopathology. 2000;15(4):1043–1050. doi: 10.14670/HH-15.1043. PubMed DOI
Cejková J., Stipek S., Crkovska J., Ardan T., Midelfart A. Reactive oxygen species (ROS)-generating oxidases in the normal rabbit cornea and their involvement in the corneal damage evoked by UVB rays. Histology and Histopathology. 2001;16(2):523–533. doi: 10.14670/HH-16.523. PubMed DOI
Lodovici M., Raimondi L., Guglielmi F., Gemignani S., Dolara P. Protection against ultraviolet B-induced oxidative DNA damage in rabbit corneal-derived cells (SIRC) by 4-coumaric acid. Toxicology. 2003;184(2-3):141–147. doi: 10.1016/S0300-483X(02)00572-3. PubMed DOI
Cejkova J., Ardan T., Cejka C., Kovaceva J., Zídek Z. Irradiation of the rabbit cornea with UVB rays stimulates the expression of nitric oxide synthases-generated nitric oxide and the formation of cytotoxic nitrogen-related oxidants. Histology and Histopathology. 2005;20(2):467–473. doi: 10.14670/HH-20.467. PubMed DOI
Pauloin T., Dutot M., Joly F., Wernet J. M., Rat P. High molecular weight hyaluronan decreases UVB-induced apoptosis and inflammation in human epithelial corneal cells. Molecular Vision. 2009;15(3):577–583. PubMed PMC
Ardan T., Cejkova J. Immunohistochemical expression of matrix metalloproteinases in the rabbit corneal epithelium upon UVA and UVB irradiation. Acta Histochemica. 2012;114(6):540–546. doi: 10.1016/j.acthis.2011.10.004. PubMed DOI
Ardan T., Němcová L., Bohuslavová B., et al. Reduced levels of tissue inhibitors of metalloproteinases in UVB-irradiated corneal epithelium. Photochemistry and Photobiology. 2016;92(5):720–727. doi: 10.1111/php.12612. PubMed DOI
Kubota M., Shimmura S., Kubota S., et al. Hydrogen and N-acettyl-L-cysteine oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model. Investigative Opthalmology & Visual Science. 2011;52(1):427–433. doi: 10.1167/iovs.10-6167. PubMed DOI
Cejkova J., Cejka C., Ardan T., Sirc J., Michalek J., Luyckx J. Reduced UVB-induced corneal damage caused by reactive oxygen and nitrogen species and decreased changes in corneal optics after trehalose treatment. Histology and Histopathology. 2010;25(11):1403–1416. doi: 10.14670/HH-25.1403. PubMed DOI
Cejkova J., Ardan T., Cejka C., Luyckx J. Favorable effects of trehalose on the development of UVB-mediated antioxidant/prooxidant imbalance in the corneal epithelium, proinflammatory cytokine and matrix metalloproteinase induction, and heat shock protein 70 expression. Graefe's Archive for Clinical and Experimental Ophthalmology. 2011;249(8):1185–1194. doi: 10.1007/s00417-011-1676-y. PubMed DOI
Cejkova J., Cejka C., Luyckx J. Trehalose treatment accelerates the healing of UVB-irradiated corneas. Comparative immunohistochemical studies on corneal cryostat sections and corneal impression cytology. Histology and Histopathology. 2012;27(8):1029–1040. doi: 10.14670/HH-27.1029. PubMed DOI
Aragona P., Colosi P., Rania L., et al. Protective effects of trehalose on the corneal epithelial cells. Scientific World Journal. 2014;2014, article 717835:9. doi: 10.1155/2014/717835. PubMed DOI PMC
Hill-Bator A., Misiuk-Hojlo M., Marycz K., Grzesiak J. Trehalose-based eye drops preserve viability and functionality of cultured human corneal epithelial cells during desiccation. BioMed Research International. 2014;2014:8. doi: 10.1155/2014/292139.292139 PubMed DOI PMC
Chen W., Zhang X., Liu M., et al. Trehalose protects against ocular surface disorders in experimental murine dry eye through suppression of apoptosis. Experimental Eye Research. 2009;89(3):311–318. doi: 10.1016/j.exer.2009.03.015. PubMed DOI
Takeuchi K., Nakazawa M., Ebina Y., et al. Inhibitory effects of trehalose on fibroblast proliferation and implications for ocular surgery. Experimental Eye Research. 2010;91(5):567–577. doi: 10.1016/j.exer.2010.07.002. PubMed DOI
Takeuchi K., Nakazawa M., Ebina Y. Effects of trehalose on VEGF-stimulated angiogenesis and myofibroblast proliferation: implications for glaucoma filtration surgery. Investigative Opthalmology & Visual Science. 2011;52(9):6987–6993. doi: 10.1167/iovs.11-7478. PubMed DOI
Kudo T., Takeuchi K., Ebina Y., Nakazawa M. Inhibitory effects of trehalose on malignant melanoma cell growth: implications for a novel topical anticancer agent on the ocular surface. ISRN Ophthalmology. 2012;2012:9. doi: 10.5402/2012/968493.968493 PubMed DOI PMC
Chen Q., Haddad G. G. Role of trehalose phosphate synthase and trehalose during hypoxia. From flies to mammals. Journal of Experimental Biology. 2004;207(18):3125–3129. doi: 10.1242/jeb.01133. PubMed DOI
Luyckx J., Baudouin C. Trehalose: an intriguing disaccharide with potential for medical application in ophthalmology. Clinical Ophthalmology. 2011;5(3):577–581. doi: 10.2147/OPTH.S18827. PubMed DOI PMC
Li J., Roubeix C., Wang Y., et al. Therapeutic efficacy of trehalose eye drops for treatment of murine dry eye induced by an intelligently controlled environmental system. Molecular Vision. 2012;18(3):317–329. PubMed PMC
Schindelin J., Arganda-Carreras I., Frise E., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Cejka C., Kossl J., Hermankova B., Holan V., Cejkova J. Molecular hydrogen effectively heals alkali-injured cornea via suppression of oxidative stress. Oxidative Medicine and Cellular Longevity. 2017;2017:12. doi: 10.1155/2017/8906027.8906027 PubMed DOI PMC
Buddi R., Lin B., Atilano S. R., Zorapapel N. C., Kenney M. C., Brown D. J. Evidence of oxidative stress in human corneal diseases. Journal of Histochemistry and Cytochemistry. 2002;50(3):341–351. doi: 10.1177/002215540205000306. PubMed DOI
Nakamura S., Shibuya M., Nakashima H., et al. Involvement of oxidative stress on corneal epithelial alterations in a blink-suppressed dry eye. Investigative Opthalmology & Visual Science. 2007;48(4):1552–1558. doi: 10.1167/iovs.06-1027. PubMed DOI
Dogru M., Kojima T., Simsek C., Tsubota K. Potential role of oxidative stress in ocular surface inflammation and dry eye disease. Investigative Opthalmology & Visual Science. 2018;59(14):DES163–DES168. doi: 10.1167/iovs.17-23402. PubMed DOI
Mizunoe Y., Kobayashi M., Sudo Y., et al. Trehalose protects against oxidative stress by regulating the Keap1-Nrf2 and autophagy pathways. Redox Biology. 2018;15:115–124. doi: 10.1016/j.redox.2017.09.007. PubMed DOI PMC
Hsieh Y. W., Lin K. C., Korivi M., Lee T. H., Wu C. Y., WU K. Y. The reliability and predictive ability of a biomarker of oxidative DNA damage on functional outcomes after stroke rehabilitation. International Journal of Molecular Sciences. 2014;15(4):6504–6516. doi: 10.3390/ijms15046504. PubMed DOI PMC
Tsai Y. Y., Cheng Y. W., Lee H., et al. Oxidative DNA damage in pterygium. Molecular Vision. 2005;7(4):71–75. PubMed
Cejka C., Cejkova J. Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries. Oxidative Medicine and Cellular Longevity. 2015;2015:10. doi: 10.1155/2015/591530.591530 PubMed DOI PMC