The Healing of Oxidative Injuries with Trehalose in UVB-Irradiated Rabbit Corneas

. 2019 ; 2019 () : 1857086. [epub] 20190919

Status odvoláno Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, publikace stažené z tisku

Perzistentní odkaz   https://www.medvik.cz/link/pmid31641422

Our previous research revealed that trehalose, a nonreducing disaccharide of glucose and an important stress responsive factor, proved to have anti-inflammatory, antiapoptotic, and particularly antioxidant properties in UVB-irradiated corneas. Trehalose reduced oxidative stress in corneas induced by UVB irradiation, by means of a decrease in the antioxidant/prooxidant imbalance in the corneal epithelium. In this study, we demonstrate that trehalose of 3% or 6% concentration in eye drops directly decreases oxidative stress in UVB-irradiated corneas, by removing the excessive amount of reactive oxygen species (ROS). Trehalose drops applied on corneas during UVB irradiation once daily for four days resulted in a reduction or even absence of the oxidative stress, DNA damage, and peroxynitrite formation (detected by nitrotyrosine residues), seen in buffer-treated corneas. Furthermore, trehalose treatment applied curatively after repeated irradiation for the subsequent fourteen days led to the renewal of corneal transparency and significant suppression or even absence of neovascularization. This was in contrast to buffer-treated irradiated corneas, where the intracorneal inflammation was developed and the untransparent corneas were vascularized. In conclusion, the treatment of UVB-irradiated corneas with trehalose eye drops removed the excessive amount of ROS in the corneal epithelium, leading to the suppression of oxidative stress and favorable corneal healing. The 6% trehalose showed a higher intensive antioxidant effect.

Odvolání publikace

PubMed

Zobrazit více v PubMed

Cejková J., Stípek S., Crkovská J., et al. UV rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage. Physiological Research. 2004;53(1):1–10. PubMed

Lennikov A., Kitaichi N., Fukase R., et al. Amelioration of ultraviolet-induced photokeratitis in mice treated with astaxanthin eye drops. Molecular Vision. 2012;18(4):455–464. PubMed PMC

Cejková J., Stípek S., Crkovská J., Ardan T. Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays, Histochemical and biochemical study. Histology and Histopathology. 2000;15(4):1043–1050. doi: 10.14670/HH-15.1043. PubMed DOI

Cejková J., Stipek S., Crkovska J., Ardan T., Midelfart A. Reactive oxygen species (ROS)-generating oxidases in the normal rabbit cornea and their involvement in the corneal damage evoked by UVB rays. Histology and Histopathology. 2001;16(2):523–533. doi: 10.14670/HH-16.523. PubMed DOI

Lodovici M., Raimondi L., Guglielmi F., Gemignani S., Dolara P. Protection against ultraviolet B-induced oxidative DNA damage in rabbit corneal-derived cells (SIRC) by 4-coumaric acid. Toxicology. 2003;184(2-3):141–147. doi: 10.1016/S0300-483X(02)00572-3. PubMed DOI

Cejkova J., Ardan T., Cejka C., Kovaceva J., Zídek Z. Irradiation of the rabbit cornea with UVB rays stimulates the expression of nitric oxide synthases-generated nitric oxide and the formation of cytotoxic nitrogen-related oxidants. Histology and Histopathology. 2005;20(2):467–473. doi: 10.14670/HH-20.467. PubMed DOI

Pauloin T., Dutot M., Joly F., Wernet J. M., Rat P. High molecular weight hyaluronan decreases UVB-induced apoptosis and inflammation in human epithelial corneal cells. Molecular Vision. 2009;15(3):577–583. PubMed PMC

Ardan T., Cejkova J. Immunohistochemical expression of matrix metalloproteinases in the rabbit corneal epithelium upon UVA and UVB irradiation. Acta Histochemica. 2012;114(6):540–546. doi: 10.1016/j.acthis.2011.10.004. PubMed DOI

Ardan T., Němcová L., Bohuslavová B., et al. Reduced levels of tissue inhibitors of metalloproteinases in UVB-irradiated corneal epithelium. Photochemistry and Photobiology. 2016;92(5):720–727. doi: 10.1111/php.12612. PubMed DOI

Kubota M., Shimmura S., Kubota S., et al. Hydrogen and N-acettyl-L-cysteine oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model. Investigative Opthalmology & Visual Science. 2011;52(1):427–433. doi: 10.1167/iovs.10-6167. PubMed DOI

Cejkova J., Cejka C., Ardan T., Sirc J., Michalek J., Luyckx J. Reduced UVB-induced corneal damage caused by reactive oxygen and nitrogen species and decreased changes in corneal optics after trehalose treatment. Histology and Histopathology. 2010;25(11):1403–1416. doi: 10.14670/HH-25.1403. PubMed DOI

Cejkova J., Ardan T., Cejka C., Luyckx J. Favorable effects of trehalose on the development of UVB-mediated antioxidant/prooxidant imbalance in the corneal epithelium, proinflammatory cytokine and matrix metalloproteinase induction, and heat shock protein 70 expression. Graefe's Archive for Clinical and Experimental Ophthalmology. 2011;249(8):1185–1194. doi: 10.1007/s00417-011-1676-y. PubMed DOI

Cejkova J., Cejka C., Luyckx J. Trehalose treatment accelerates the healing of UVB-irradiated corneas. Comparative immunohistochemical studies on corneal cryostat sections and corneal impression cytology. Histology and Histopathology. 2012;27(8):1029–1040. doi: 10.14670/HH-27.1029. PubMed DOI

Aragona P., Colosi P., Rania L., et al. Protective effects of trehalose on the corneal epithelial cells. Scientific World Journal. 2014;2014, article 717835:9. doi: 10.1155/2014/717835. PubMed DOI PMC

Hill-Bator A., Misiuk-Hojlo M., Marycz K., Grzesiak J. Trehalose-based eye drops preserve viability and functionality of cultured human corneal epithelial cells during desiccation. BioMed Research International. 2014;2014:8. doi: 10.1155/2014/292139.292139 PubMed DOI PMC

Chen W., Zhang X., Liu M., et al. Trehalose protects against ocular surface disorders in experimental murine dry eye through suppression of apoptosis. Experimental Eye Research. 2009;89(3):311–318. doi: 10.1016/j.exer.2009.03.015. PubMed DOI

Takeuchi K., Nakazawa M., Ebina Y., et al. Inhibitory effects of trehalose on fibroblast proliferation and implications for ocular surgery. Experimental Eye Research. 2010;91(5):567–577. doi: 10.1016/j.exer.2010.07.002. PubMed DOI

Takeuchi K., Nakazawa M., Ebina Y. Effects of trehalose on VEGF-stimulated angiogenesis and myofibroblast proliferation: implications for glaucoma filtration surgery. Investigative Opthalmology & Visual Science. 2011;52(9):6987–6993. doi: 10.1167/iovs.11-7478. PubMed DOI

Kudo T., Takeuchi K., Ebina Y., Nakazawa M. Inhibitory effects of trehalose on malignant melanoma cell growth: implications for a novel topical anticancer agent on the ocular surface. ISRN Ophthalmology. 2012;2012:9. doi: 10.5402/2012/968493.968493 PubMed DOI PMC

Chen Q., Haddad G. G. Role of trehalose phosphate synthase and trehalose during hypoxia. From flies to mammals. Journal of Experimental Biology. 2004;207(18):3125–3129. doi: 10.1242/jeb.01133. PubMed DOI

Luyckx J., Baudouin C. Trehalose: an intriguing disaccharide with potential for medical application in ophthalmology. Clinical Ophthalmology. 2011;5(3):577–581. doi: 10.2147/OPTH.S18827. PubMed DOI PMC

Li J., Roubeix C., Wang Y., et al. Therapeutic efficacy of trehalose eye drops for treatment of murine dry eye induced by an intelligently controlled environmental system. Molecular Vision. 2012;18(3):317–329. PubMed PMC

Schindelin J., Arganda-Carreras I., Frise E., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Cejka C., Kossl J., Hermankova B., Holan V., Cejkova J. Molecular hydrogen effectively heals alkali-injured cornea via suppression of oxidative stress. Oxidative Medicine and Cellular Longevity. 2017;2017:12. doi: 10.1155/2017/8906027.8906027 PubMed DOI PMC

Buddi R., Lin B., Atilano S. R., Zorapapel N. C., Kenney M. C., Brown D. J. Evidence of oxidative stress in human corneal diseases. Journal of Histochemistry and Cytochemistry. 2002;50(3):341–351. doi: 10.1177/002215540205000306. PubMed DOI

Nakamura S., Shibuya M., Nakashima H., et al. Involvement of oxidative stress on corneal epithelial alterations in a blink-suppressed dry eye. Investigative Opthalmology & Visual Science. 2007;48(4):1552–1558. doi: 10.1167/iovs.06-1027. PubMed DOI

Dogru M., Kojima T., Simsek C., Tsubota K. Potential role of oxidative stress in ocular surface inflammation and dry eye disease. Investigative Opthalmology & Visual Science. 2018;59(14):DES163–DES168. doi: 10.1167/iovs.17-23402. PubMed DOI

Mizunoe Y., Kobayashi M., Sudo Y., et al. Trehalose protects against oxidative stress by regulating the Keap1-Nrf2 and autophagy pathways. Redox Biology. 2018;15:115–124. doi: 10.1016/j.redox.2017.09.007. PubMed DOI PMC

Hsieh Y. W., Lin K. C., Korivi M., Lee T. H., Wu C. Y., WU K. Y. The reliability and predictive ability of a biomarker of oxidative DNA damage on functional outcomes after stroke rehabilitation. International Journal of Molecular Sciences. 2014;15(4):6504–6516. doi: 10.3390/ijms15046504. PubMed DOI PMC

Tsai Y. Y., Cheng Y. W., Lee H., et al. Oxidative DNA damage in pterygium. Molecular Vision. 2005;7(4):71–75. PubMed

Cejka C., Cejkova J. Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries. Oxidative Medicine and Cellular Longevity. 2015;2015:10. doi: 10.1155/2015/591530.591530 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...