Strain-Field Modifications in the Surroundings of Impact Damage of Carbon/Epoxy Laminate
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
886703
European Union
PubMed
36015505
PubMed Central
PMC9414715
DOI
10.3390/polym14163243
PII: polym14163243
Knihovny.cz E-resources
- Keywords
- Abaqus, composite, correlation, experiment, impact, laminate, simulation, strain-field distribution, structural analysis,
- Publication type
- Journal Article MeSH
The relationship between deformation and stress is crucial for any elasto-plastic body. This paper deals with the experimental identification of the basic parameters of the composite laminate model in relation to the finite element model. Standardized tensile, impact, and post-impact tests on a carbon fiber-reinforced epoxy laminate were used. The method by which the elasticity and failure parameters were obtained from the initial components is described. In the article, the modes of initiation and complete failure of samples in tensile tests, which are compared with the simulation, are presented. Furthermore, the article deals with the issue of the generation and detection of damage by low-speed impact, which can be caused by contact with moving objects, due to improper handling or maintenance. The results of impact analysis simulations are shown in the context of strain-field distribution changes obtained with the help of digital image correlation. The results showed high agreement between the calculations and the experiments. Based on this agreement, simulations of impact damage for various energies were performed. These simulations were used to determine the approximate sizes of the affected zones in relation to the impact energy. The results are finally discussed in the context of the possible use of structural health monitoring based on strain modifications.
See more in PubMed
Das T.K., Ghosh P., Das N.C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: A review. Adv. Compos. Hybrid Mater. 2019;2:214–233. doi: 10.1007/s42114-018-0072-z. DOI
Zhou J., Liao B., Shi Y., Zuo Y., Tuo H., Jia L. Low-velocity impact behavior and residual tensile strength of CFRP laminates. Compos. Part B Eng. 2019;161:300–313. doi: 10.1016/j.compositesb.2018.10.090. DOI
Delaney M., Fung S., Kim H. Dent depth visibility versus delamination damage for impact of composite panels by tips of varying radius. J. Compos. Mater. 2018;52:2691–2705. doi: 10.1177/0021998317752502. DOI
Hongliang T., Zhixian L., Xiaoping M., Chao Z., Chen S. An experimental and numerical investigation on low-velocity impact damage and compression-after-impact behavior of composite laminates. Compos. Part B Eng. 2019;167:329–341.
Kadlec M., Kafka V. Strain Concentration during the compression of a Carbon/Epoxy Composite after impact. Int. J. Struct. Integr. 2015;6:279–289. doi: 10.1108/IJSI-08-2013-0016. DOI
Bathe K. Finite Element Procedures. Volume 1 PHI Learning Private Limited; Delhi, India: 1996.
ABAQUS-6.14. Theory Manual. [(accessed on 8 December 2021)]. Available online: http://130.149.89.49:2080/v6.14/
Lahey S.R., Miller P.M., Reymond M. MSC.NASTRAN 2004 Reference Manual, Version 68. Volume 2. MSC.Software Corporation; Santa Ana, CA, USA: 2004. pp. 583–584.
Vlach J., Raška J., Horňas J., Petrusová L. Impacted area description effect on strength of laminate determined by calculation. Procedia Struct. Integr. 2022;35:132–140. doi: 10.1016/j.prostr.2021.12.057. DOI
Balasubramaniam K., Ziaja D., Jurek M., Fiborek P., Malinowski P. Experimental and Numerical Analysis of Multiple Low-Velocity Impact Damages in a Glass Fibered Composite Structure. Materials. 2021;14:7268. doi: 10.3390/ma14237268. PubMed DOI PMC
Pan B. Digital image correlation for surface deformation measurement: Historical developments, recent advances and future goals. Meas. Sci. Technol. 2018;29:082001. doi: 10.1088/1361-6501/aac55b. DOI
Berthelot J.M. Matériaux Composites, Comportement Mécanique et Analyse Des Structures. 1st ed. Masson; Paris, France: 1992. pp. 154–196.
Ning Z.H., Huo G.L., Liu R.H., Wu W.L., Xie J.M. Progressive Failure Analysis of Laminates with Embedded Wrinkle Defects Based on an Elastoplastic Damage Model. Materials. 2020;13:2422. doi: 10.3390/ma13102422. PubMed DOI PMC
Zhang S., Xing T., Zhu H., Chen X. Experimental Identification of Statistical Correlation between Mechanical Properties of FRP Composite. Materials. 2020;13:674. doi: 10.3390/ma13030674. PubMed DOI PMC
ASTM standard . Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International; Philadelphia, PA, USA: 2014.
ASTM standard . Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International; Philadelphia, PA, USA: 2012.
T700G Technical Data Sheet. [(accessed on 5 May 2022)]. Available online: https://www.toraycma.com/wp-content/uploads/T700G-Technical-Data-Sheet-1.pdf.
Daniel I.M., Ishai O. Engineering Mechanics of Composite Materials. 2nd ed. Oxford University Press; New York, NY, USA: 2006. pp. 268–272.
Kadlec M., Vích O., Novotný D. Book of Full Papers, Proceedings of the Experimental Stress Analysis Conference, Litomyšl, Czech Republic, 29 September 2021. Czech Technical University; Prague, Czech Republic: Composite laminate deflection during low-velocity impact; pp. 86–90.
Pierard O., Friebel C., Doghri I. Mean-field homogenization of multi-phase thermos-elastic composites: A general framework and its validation. Compos. Sci. Technol. 2004;64:1587–1603. doi: 10.1016/j.compscitech.2003.11.009. DOI
Ye F., Wang H. A simple Python code for computing effective properties of 2D and 3D representative volume element under periodic boundary conditions. arXiv. 2017 doi: 10.48550/arXiv.1703.03930.1703.03930 DOI
Hashin Z. Failure criteria for unidirectional fiber composites. J. Appl. Mech. 1980;47:329–334. doi: 10.1115/1.3153664. DOI
Hashin Z., Rotem A. A fatigue failure criterion for fiber-reinforced materials. J. Compos. Mater. 1973;7:448–464. doi: 10.1177/002199837300700404. DOI
Koloor S., Karimzadeh A., Abdulah M., Petru M., Yidris N., Sapuan S., Tamin M. Linear-Nonlinear Stiffness Responses of carbon Fiber-Reinforced Polymer Composite Materials and Structures. Polymers. 2021;13:344. doi: 10.3390/polym13030344. PubMed DOI PMC
Koloor S., Karimzadeh A., Yidris N., Petru M., Ayatollahi M., Tamin M. An Energy-Based Concept for Yielding of Multidirectional FRP Composite Structures Using a Mesoscale Lamina Damage Model. Polymers. 2020;12:157. doi: 10.3390/polym12010157. PubMed DOI PMC
Šedek J., Bělský P. Numerical evaluation of barely visible impact damage in a carbon fibre-reinforced composite panel with shear loading. WIT Trans. Eng. Sci. 2017;116:73–85.
Jia L., Yu L., Zhang K., Li M., Jia Y., Blackman B., Dear J. Combined modelling and experimental studies of failure in thick laminates under out-of-plane shear. Compos. Part B Eng. 2016;105:8–22. doi: 10.1016/j.compositesb.2016.08.017. DOI
Matzenmiller A., Lubliner J., Taylor R. A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 1995;20:125–152. doi: 10.1016/0167-6636(94)00053-0. DOI
Donghyun Y., Sangdeok K., Jaehoon K., Youngdae D. Development and Evaluation of Crack Band Model Implemented Progressive Failure Analysis Method for Notched Composite Laminate. Appl. Sci. 2019;9:5572.
Murakami S. Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture. Volume 185 Springer Science & Business Media; Berlin/Heidelberg, Germany: 2012.
Liao B., Jia L., Zhou J., Lei H., Gao R., Lin Y., Fang D. An explicit–implicit combined model for predicting residual strength of composite cylinders subjected to low velocity impact. Compos. Struct. 2020;247:112450. doi: 10.1016/j.compstruct.2020.112450. DOI
Kim E., Rim M., Lee I., Hwang T. Composite damage model based on continuum damage mechanics and low velocity impact analysis of composite plates. Compos. Struct. 2013;95:123–134. doi: 10.1016/j.compstruct.2012.07.002. DOI
Afshar A., Daneshyar A., Mohammadi S. XFEM analysis of fiber bridging in mixed-mode crack propagation in composites. Compos. Struct. 2015;125:314–327. doi: 10.1016/j.compstruct.2015.02.002. DOI
Vlach J., Doubrava R., Růžek R., Raška J., Horňas J., Kadlec M. Linearization of Composite Material Damage Model Results and Its Impact on the Subsequent Stress–Strain Analysis. Polymers. 2022;14:1123. doi: 10.3390/polym14061123. PubMed DOI PMC
Wei L., Zhu W., Yu Z., Liu J., Wei X. A new three-dimensional progressive damage model for fiber-reinforced polymer laminates and its applications to large open-hole panels. Compos. Sci. Technol. 2019;182:107757. doi: 10.1016/j.compscitech.2019.107757. DOI
Rektorys K. Přehled Užité Matematiky II (Review of Applied Mathematics II) Prometheus; Praha, Czech: 1995.