Linearization of Composite Material Damage Model Results and Its Impact on the Subsequent Stress-Strain Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
886703
European Union
PubMed
35335453
PubMed Central
PMC8949470
DOI
10.3390/polym14061123
PII: polym14061123
Knihovny.cz E-zdroje
- Klíčová slova
- Hashin, composite, damage simulation, linear solver, linearization, non-linear solver,
- Publikační typ
- časopisecké články MeSH
To solve problems in the field of mechanical engineering efficiently, individual numerical procedures must be developed, and solvers must be adapted. This study applies the results of a carbon-fibre reinforced polymer (CFRP) analysis along with the nonlinear finite element damage (FE) method to the translation of a linear solver. The analyzed tensile test sample is modelled using the ply-by-ply method. To describe the nonlinear post-damage behavior of the material, the Hashin model is used. To validate the transformation, an analysis and comparison of the damage results of the linearized and nonlinear model is carried out. Job linearization was performed by collecting elements into groups based on their level of damage and pairing them with unique material cards. Potentially suitable mathematical functions are tested for the grouping and consolidation of the elements. The results show that the agreement of some presented methods depends on the damage level. The influence of the selected statistical functions on the result is shown here. The optimal solution is demonstrated, and the most efficient method of linearization is presented. The main motivation behind this work is that the problem has not been discussed in the literature and that there is currently no commercial software translator that provides the transference of models between solvers.
Zobrazit více v PubMed
ABAQUS-6.14. Theory Manual. [(accessed on 8 December 2021)]. Available online: http://130.149.89.49:2080/v6.14/
Lahey S.R., Miller P.M., Reymond M. MSC.NASTRAN 2004 Reference Manual. Volume 2. MSC.Software Corporation; Santa Ana, CA, USA: 2004. pp. 583–584. Version 68.
Bathe K. Finite Element Procedures. Volume 1 PHI Learning Private Limited; Delhi, India: 1996.
Matzenmiller A., Lubliner J., Taylor R. A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 1995;20:125–152. doi: 10.1016/0167-6636(94)00053-0. DOI
Donghyun Y., Sangdeok K., Jaehoon K., Youngdae D. Development and Evaluation of Crack Band Model Implemented Progressive Failure Analysis Method for Notched Composite Laminate. Appl. Sci. 2019;9:5572. doi: 10.3390/app9245572. DOI
Koloor S., Karimzadeh A., Yidris N., Petru M., Ayatollahi M., Tamin M. An Energy-Based Concept for Yielding of Multidirectional FRP Composite Structures Using a Mesoscale Lamina Damage Model. Polymers. 2020;12:157. doi: 10.3390/polym12010157. PubMed DOI PMC
Koloor S., Karimzadeh A., Abdulah M., Petru M., Yidris N., Sapuan S., Tamin M. Linear-Nonlinear Stiffness Responses of carbon Fiber-Reinforced Polymer Composite Materials and Structures. Polymers. 2021;13:344. doi: 10.3390/polym13030344. PubMed DOI PMC
Murakami S. Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture. Volume 185 Springer Science & Business Media; Berlin/Heidelberg, Germany: 2012.
Wei L., Zhu W., Yu Z., Liu J., Wei X. A new three-dimensional progressive damage model for fiber-reinforced polymer laminates and its applications to large open-hole panels. Compos. Sci. Technol. 2019;182:107757. doi: 10.1016/j.compscitech.2019.107757. DOI
Liao B., Jia L., Zhou J., Lei H., Gao R., Lin Y., Fang D. An explicit–implicit combined model for predicting residual strength of composite cylinders subjected to low velocity impact. Compos. Struct. 2020;247:112450. doi: 10.1016/j.compstruct.2020.112450. DOI
Jia L., Yu L., Zhang K., Li M., Jia Y., Blackman B., Dear J. Combined modelling and experimental studies of failure in thick laminates under out-of-plane shear. Compos. Part B Eng. 2016;105:8–22. doi: 10.1016/j.compositesb.2016.08.017. DOI
Kim E., Rim M., Lee I., Hwang T. Composite damage model based on continuum damage mechanics and low velocity impact analysis of composite plates. Compos. Struct. 2013;95:123–134. doi: 10.1016/j.compstruct.2012.07.002. DOI
Šedek J., Bělský P. Numerical evaluation of barely visible impact damage in a carbon fibre-reinforced composite panel with shear loading. WIT Trans. Eng. Sci. 2017;116:73–85.
Vlach J., Raška J., Horňas J., Petrusová L. Impacted area description effect on strength of laminate determined by calculation. Procedia Struct. Integr. 2022;35:132–140. doi: 10.1016/j.prostr.2021.12.057. DOI
Afshar A., Daneshyar A., Mohammadi S. XFEM analysis of fiber bridging in mixed-mode crack propagation in composites. Compos. Struct. 2015;125:314–327. doi: 10.1016/j.compstruct.2015.02.002. DOI
Hashin Z. Failure criteria for unidirectional fiber composites. J. Appl. Mech. 1980;47:329–334. doi: 10.1115/1.3153664. DOI
Hashin Z., Rotem A. A fatigue failure criterion for fiber-reinforced materials. J. Compos. Mater. 1973;7:448–464. doi: 10.1177/002199837300700404. DOI
Berthelot J.M. Matériaux Composites, Comportement Mécanique et Analyse Des Structures. 1st ed. Masson; Paris, France: 1992. pp. 154–196.
Daniel I.M., Ishai O. Engineering Mechanics of Composite Materials. 2nd ed. Oxford University Press; New York, NY, USA: 2006. pp. 268–272.
Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International; Philadelphia, PA, USA: 2014.