Hepatoprotective effect of MMP-19 deficiency in a mouse model of chronic liver fibrosis

. 2012 ; 7 (10) : e46271. [epub] 20121009

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23056273

Liver fibrosis is characterized by the deposition and increased turnover of extracellular matrix. This process is controlled by matrix metalloproteinases (MMPs), whose expression and activity dynamically change during injury progression. MMP-19, one of the most widely expressed MMPs, is highly expressed in liver; however, its contribution to liver pathology is unknown. The aim of this study was to elucidate the role of MMP-19 during the development and resolution of fibrosis by comparing the response of MMP-19-deficient (MMP19KO) and wild-type mice upon chronic liver CCl(4)-intoxication. We show that loss of MMP-19 was beneficial during liver injury, as plasma ALT and AST levels, deposition of fibrillar collagen, and phosphorylation of SMAD3, a TGF-ß1 signaling molecule, were all significantly lower in MMP19KO mice. The ameliorated course of the disease in MMP19KO mice likely results from a slower rate of basement membrane destruction and ECM remodeling as the knockout mice maintained significantly higher levels of type IV collagen and lower expression and activation of MMP-2 after 4 weeks of CCl(4)-intoxication. Hastened liver regeneration in MMP19KO mice was associated with slightly higher IGF-1 mRNA expression, slightly increased phosphorylation of Akt kinase, decreased TGF-ß1 mRNA levels and significantly reduced SMAD3 phosphorylation. In addition, primary hepatocytes isolated from MMP19KO mice showed impaired responsiveness towards TGF-ß1 stimulation, resulting in lower expression of Snail1 and vimentin mRNA. Thus, MMP-19-deficiency improves the development of hepatic fibrosis through the diminished replacement of physiological extracellular matrix with fibrotic deposits in the beginning of the injury, leading to subsequent changes in TGF-ß and IGF-1 signaling pathways.

Zobrazit více v PubMed

Jiao J, Friedman SL, Aloman C (2009) Hepatic fibrosis. Current opinion in gastroenterology 25: 223–229. PubMed PMC

Radbill BD, Gupta R, Ramirez MC, DiFeo A, Martignetti JA, et al. (2011) Loss of matrix metalloproteinase-2 amplifies murine toxin-induced liver fibrosis by upregulating collagen I expression. Digestive diseases and sciences 56: 406–416. PubMed PMC

Knittel T, Mehde M, Grundmann A, Saile B, Scharf JG, et al. (2000) Expression of matrix metalloproteinases and their inhibitors during hepatic tissue repair in the rat. Histochemistry and cell biology 113: 443–453. PubMed

Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117: 524–529. PubMed PMC

Kahraman A, Bronk SF, Cazanave S, Werneburg NW, Mott JL, et al. (2009) Matrix metalloproteinase inhibitor, CTS-1027, attenuates liver injury and fibrosis in the bile duct-ligated mouse. Hepatol Res 39: 805–813. PubMed PMC

Hu J, Van den Steen PE, Sang QX, Opdenakker G (2007) Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 6: 480–498. PubMed

Takahara T, Furui K, Funaki J, Nakayama Y, Itoh H, et al. (1995) Increased expression of matrix metalloproteinase-II in experimental liver fibrosis in rats. Hepatology 21: 787–795. PubMed

Milani S, Herbst H, Schuppan D, Grappone C, Pellegrini G, et al. (1994) Differential expression of matrix-metalloproteinase-1 and -2 genes in normal and fibrotic human liver. Am J Pathol 144: 528–537. PubMed PMC

Benyon RC, Arthur MJ (2001) Extracellular matrix degradation and the role of hepatic stellate cells. Semin Liver Dis 21: 373–384. PubMed

Radbill BD, Gupta R, Ramirez MC, DiFeo A, Martignetti JA, et al. Loss of matrix metalloproteinase-2 amplifies murine toxin-induced liver fibrosis by upregulating collagen I expression. Dig Dis Sci 56: 406–416. PubMed PMC

Onozuka I, Kakinuma S, Kamiya A, Miyoshi M, Sakamoto N, et al. (2011) Cholestatic liver fibrosis and toxin-induced fibrosis are exacerbated in matrix metalloproteinase-2 deficient mice. Biochemical and biophysical research communications 406: 134–140. PubMed

Uchinami H, Seki E, Brenner DA, D'Armiento J (2006) Loss of MMP 13 attenuates murine hepatic injury and fibrosis during cholestasis. Hepatology 44: 420–429. PubMed

Gieling RG, Wallace K, Han YP (2009) Interleukin-1 participates in the progression from liver injury to fibrosis. American journal of physiology Gastrointestinal and liver physiology 296: G1324–1331. PubMed PMC

Pendas AM, Knauper V, Puente XS, Llano E, Mattei MG, et al. (1997) Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution. J Biol Chem 272: 4281–4286. PubMed

Cossins J, Dudgeon TJ, Catlin G, Gearing AJ, Clements JM (1996) Identification of MMP-18, a putative novel human matrix metalloproteinase. Biochem Biophys Res Commun 228: 494–498. PubMed

Kolb C, Mauch S, Peter HH, Krawinkel U, Sedlacek R (1997) The matrix metalloproteinase RASI-1 is expressed in synovial blood vessels of a rheumatoid arthritis patient. Immunol Lett 57: 83–88. PubMed

Mauch S, Kolb C, Kolb B, Sadowski T, Sedlacek R (2002) Matrix metalloproteinase-19 is expressed in myeloid cells in an adhesion-dependent manner and associates with the cell surface. Journal of immunology 168: 1244–1251. PubMed

Sadowski T, Dietrich S, Muller M, Havlickova B, Schunck M, et al. (2003) Matrix metalloproteinase-19 expression in normal and diseased skin: dysregulation by epidermal proliferation. J Invest Dermatol 121: 989–996. PubMed

Sedlacek R, Mauch S, Kolb B, Schatzlein C, Eibel H, et al. (1998) Matrix metalloproteinase MMP-19 (RASI-1) is expressed on the surface of activated peripheral blood mononuclear cells and is detected as an autoantigen in rheumatoid arthritis. Immunobiology 198: 408–423. PubMed

Sadowski T, Dietrich S, Koschinsky F, Ludwig A, Proksch E, et al. (2005) Matrix metalloproteinase 19 processes the laminin 5 gamma 2 chain and induces epithelial cell migration. Cell Mol Life Sci 62: 870–880. PubMed

Stracke JO, Fosang AJ, Last K, Mercuri FA, Pendas AM, et al. (2000) Matrix metalloproteinases 19 and 20 cleave aggrecan and cartilage oligomeric matrix protein (COMP). FEBS Lett 478: 52–56. PubMed

Stracke JO, Hutton M, Stewart M, Pendas AM, Smith B, et al. (2000) Biochemical characterization of the catalytic domain of human matrix metalloproteinase 19. Evidence for a role as a potent basement membrane degrading enzyme. J Biol Chem 275: 14809–14816. PubMed

Titz B, Dietrich S, Sadowski T, Beck C, Petersen A, et al. (2004) Activity of MMP-19 inhibits capillary-like formation due to processing of nidogen-1. Cell Mol Life Sci 61: 1826–1833. PubMed PMC

Gueders MM, Hirst SJ, Quesada-Calvo F, Paulissen G, Hacha J, et al. (2010) Matrix metalloproteinase-19 deficiency promotes tenascin-C accumulation and allergen-induced airway inflammation. Am J Respir Cell Mol Biol 43: 286–295. PubMed

Jost M, Folgueras AR, Frerart F, Pendas AM, Blacher S, et al. (2006) Earlier onset of tumoral angiogenesis in matrix metalloproteinase-19-deficient mice. Cancer Res 66: 5234–5241. PubMed

Chan KC, Ko JM, Lung HL, Sedlacek R, Zhang ZF, et al. (2011) Catalytic activity of matrix metalloproteinase-19 is essential for tumor suppressor and anti-angiogenic activities in nasopharyngeal carcinoma. Int J Cancer 129: 1826–1837. PubMed

Yu G, Kovkarova-Naumovski E, Jara P, Parwani A, Kass D, et al. (2012) MMP19 is a Key Regulator of Lung Fibrosis in Mice and Humans. Am J Respir Crit Care Med PubMed PMC

Mueller MS, Harnasch M, Kolb C, Kusch J, Sadowski T, et al. (2000) The murine ortholog of matrix metalloproteinase 19: its cloning, gene organization, and expression. Gene 256: 101–111. PubMed

Pendas AM, Folgueras AR, Llano E, Caterina J, Frerard F, et al. (2004) Diet-induced obesity and reduced skin cancer susceptibility in matrix metalloproteinase 19-deficient mice. Mol Cell Biol 24: 5304–5313. PubMed PMC

Beck IM, Ruckert R, Brandt K, Mueller MS, Sadowski T, et al. (2008) MMP19 is essential for T cell development and T cell-mediated cutaneous immune responses. PLoS One 3: e2343. PubMed PMC

Jelcick AS, Yuan Y, Leehy BD, Cox LC, Silveira AC, et al. (2011) Genetic variations strongly influence phenotypic outcome in the mouse retina. PLoS One 6: e21858. PubMed PMC

Junqueira LC, Bignolas G, Brentani RR (1979) Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 11: 447–455. PubMed

Kakinuma M, Watanabe Y, Hori Y, Oh IT, Tsuboi R (2005) Quantification of hydroxyproline in small amounts of skin tissue using isocratic high performance liquid chromatography with NBD-F as fluorogenic reagent. J Chromatogr B Analyt Technol Biomed Life Sci 824: 161–165. PubMed

Sadowski T, Dietrich S, Koschinsky F, Sedlacek R (2003) Matrix metalloproteinase 19 regulates insulin-like growth factor-mediated proliferation, migration, and adhesion in human keratinocytes through proteolysis of insulin-like growth factor binding protein-3. Mol Biol Cell 14: 4569–4580. PubMed PMC

Moldeus P, Hogberg J, Orrenius S (1978) Isolation and use of liver cells. Methods Enzymol 52: 60–71. PubMed

Arthur MJ (2000) Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. American journal of physiology Gastrointestinal and liver physiology 279: G245–249. PubMed

Benyon RC, Arthur MJ (2001) Extracellular matrix degradation and the role of hepatic stellate cells. Seminars in liver disease 21: 373–384. PubMed

Theret N, Musso O, L'Helgoualc'h A, Campion JP, Clement B (1998) Differential expression and origin of membrane-type 1 and 2 matrix metalloproteinases (MT-MMPs) in association with MMP2 activation in injured human livers. Am J Pathol 153: 945–954. PubMed PMC

Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, et al. (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270: 5331–5338. PubMed

Zhang D, Brodt P (2003) Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI 3-kinase/Akt signaling. Oncogene 22: 974–982. PubMed

Pei D, Weiss SJ (1996) Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J Biol Chem 271: 9135–9140. PubMed

Zhang M, Zhou Q, Liang QQ, Li CG, Holz JD, et al. (2009) IGF-1 regulation of type II collagen and MMP-13 expression in rat endplate chondrocytes via distinct signaling pathways. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society 17: 100–106. PubMed

Huang SS, Huang JS (2005) TGF-beta control of cell proliferation. Journal of cellular biochemistry 96: 447–462. PubMed

Russell WE, Coffey RJ Jr, Ouellette AJ, Moses HL (1988) Type beta transforming growth factor reversibly inhibits the early proliferative response to partial hepatectomy in the rat. Proc Natl Acad Sci U S A 85: 5126–5130. PubMed PMC

Ueno H, Sakamoto T, Nakamura T, Qi Z, Astuchi N, et al. (2000) A soluble transforming growth factor beta receptor expressed in muscle prevents liver fibrogenesis and dysfunction in rats. Human gene therapy 11: 33–42. PubMed

George J, Roulot D, Koteliansky VE, Bissell DM (1999) In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: a potential new therapy for hepatic fibrosis. Proceedings of the National Academy of Sciences of the United States of America 96: 12719–12724. PubMed PMC

Sanz S, Pucilowska JB, Liu S, Rodriguez-Ortigosa CM, Lund PK, et al. (2005) Expression of insulin-like growth factor I by activated hepatic stellate cells reduces fibrogenesis and enhances regeneration after liver injury. Gut 54: 134–141. PubMed PMC

Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14: 163–176. PubMed PMC

Celton-Morizur S, Merlen G, Couton D, Margall-Ducos G, Desdouets C (2009) The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J Clin Invest 119: 1880–1887. PubMed PMC

Zimmermann EM, Li L, Hoyt EC, Pucilowska JB, Lichtman S, et al. (2000) Cell-specific localization of insulin-like growth factor binding protein mRNAs in rat liver. Am J Physiol Gastrointest Liver Physiol 278: G447–457. PubMed

Gentilini A, Feliers D, Pinzani M, Woodruff K, Abboud S (1998) Characterization and regulation of insulin-like growth factor binding proteins in human hepatic stellate cells. J Cell Physiol 174: 240–250. PubMed

Rowe RG, Lin Y, Shimizu-Hirota R, Hanada S, Neilson EG, et al. (2011) Hepatocyte-derived Snail1 propagates liver fibrosis progression. Mol Cell Biol 31: 2392–2403. PubMed PMC

Godoy P, Hengstler JG, Ilkavets I, Meyer C, Bachmann A, et al. (2009) Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor beta-induced apoptosis. Hepatology 49: 2031–2043. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...