Liver protective effect of ursodeoxycholic acid includes regulation of ADAM17 activity
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24172289
PubMed Central
PMC3835136
DOI
10.1186/1471-230x-13-155
PII: 1471-230X-13-155
Knihovny.cz E-zdroje
- MeSH
- buňky Hep G2 MeSH
- cholagoga a choleretika farmakologie MeSH
- cholestáza MeSH
- hepatocyty účinky léků MeSH
- játra účinky léků MeSH
- kyselina ursodeoxycholová farmakologie MeSH
- lidé MeSH
- ligace MeSH
- MAP kinasový signální systém účinky léků MeSH
- myši MeSH
- protein ADAM17 MeSH
- proteiny ADAM účinky léků MeSH
- protoonkogenní proteiny c-met účinky léků metabolismus MeSH
- TNF-alfa účinky léků metabolismus MeSH
- transformující růstový faktor alfa účinky léků metabolismus MeSH
- žlučové cesty chirurgie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ADAM17 protein, human MeSH Prohlížeč
- Adam17 protein, mouse MeSH Prohlížeč
- cholagoga a choleretika MeSH
- kyselina ursodeoxycholová MeSH
- protein ADAM17 MeSH
- proteiny ADAM MeSH
- protoonkogenní proteiny c-met MeSH
- TNF-alfa MeSH
- transformující růstový faktor alfa MeSH
BACKGROUND: Ursodeoxycholic acid (UDCA) is used to treat primary biliary cirrhosis, intrahepatic cholestasis, and other cholestatic conditions. Although much has been learned about the molecular basis of the disease pathophysiology, our understanding of the effects of UDCA remains unclear. Possibly underlying its cytoprotective, anti-apoptotic, anti-oxidative effects, UDCA was reported to regulate the expression of TNFα and other inflammatory cytokines. However, it is not known if this effect involves also modulation of ADAM family of metalloproteinases, which are responsible for release of ectodomains of inflammatory cytokines from the cell surface. We hypothesized that UDCA modulates ADAM17 activity, resulting in amelioration of cholestasis in a murine model of bile duct ligation (BDL). METHODS: The effect of UDCA on ADAM17 activity was studied using the human liver hepatocellular carcinoma cell line HepG2. Untransfected cells or cells ectopically expressing human ADAM17 were cultured with or without UDCA and further activated using phorbol-12-myristate-13-acetate (PMA). The expression and release of ADAM17 substrates, TNFα, TGFα, and c-Met receptor (or its soluble form, sMet) were evaluated using ELISA and quantitative real-time (qRT) PCR. Immunoblotting analyses were conducted to evaluate expression and activation of ADAM17 as well as the level of ERK1/2 phosphorylation after UDCA treatment. The regulation of tissue inhibitor of metalloproteinases-1 (TIMP-1) by UDCA was studied using zymography and qRT-PCR. A mouse model of acute cholestasis was induced by common BDL technique, during which mice received daily orogastric gavage with either UDCA or vehicle only. Liver injury was quantified using alkaline phosphatase (ALP), relative liver weight, and confirmed by histological analysis. ADAM17 substrates in sera were assessed using a bead multiplex assay. RESULTS: UDCA decreases amount of shed TNFα, TGFα, and sMet in cell culture media and the phosphorylation of ERK1/2. These effects are mediated by the reduction of ADAM17 activity in PMA stimulated cells although the expression ADAM17 is not affected. UDCA reduced the level of the mature form of ADAM17. Moreover, UDCA regulates the expression of TIMP-1 and gelatinases activity in PMA stimulated cells. A BDL-induced acute cholangitis model was characterized by increased relative liver weight, serum levels of ALP, sMet, and loss of intracellular glycogen. UDCA administration significantly decreased ALP and sMet levels, and reduced relative liver weight. Furthermore, hepatocytes of UDCA-treated animals retained their metabolic activity as evidenced by the amount of glycogen storage. CONCLUSIONS: The beneficial effect of UDCA appears to be mediated in part by the inhibition of ADAM17 activation and, thus, the release of TNFα, a strong pro-inflammatory factor. The release of other ADAM17 substrates, TGFα and sMet, are also regulated this way, pointing to a general impact on the release of ADAM17 substrates, which are pivotal for liver regeneration and function. In parallel, UDCA upregulates TIMP-1 that in turn inhibits matrix metalloproteinases, which destroy the hepatic ECM in diseased liver. This control of extracellular matrix turnover represents an additional beneficial path of UDCA treatment.
Zobrazit více v PubMed
Poupon RE. Ursodeoxycholic acid for primary biliary cirrhosis: lessons from the past–issues for the future. J Hepatol. 2000;32(4):685–688. doi: 10.1016/S0168-8278(00)80232-9. PubMed DOI
Okada K, Shoda J, Taguchi K, Maher JM, Ishizaki K, Inoue Y, Ohtsuki M, Goto N, Takeda K, Utsunomiya H. et al.Ursodeoxycholic acid stimulates Nrf2-mediated hepatocellular transport, detoxification, and antioxidative stress systems in mice. Am J Physiol Gastrointest Liver Physiol. 2008;295(4):G735–747. doi: 10.1152/ajpgi.90321.2008. PubMed DOI
Uriz M, Saez E, Prieto J, Medina JF, Banales JM. Ursodeoxycholic acid is conjugated with taurine to promote secretin-stimulated biliary hydrocholeresis in the normal rat. PloS one. 2011;6(12):e28717. doi: 10.1371/journal.pone.0028717. PubMed DOI PMC
Maillette De Buy Wenniger L, Beuers U. Bile salts and cholestasis. Dig Liver Dis. 2010;42(6):409–418. doi: 10.1016/j.dld.2010.03.015. PubMed DOI
Yerushalmi B, Dahl R, Devereaux MW, Gumpricht E, Sokol RJ. Bile acid-induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition. Hepatology. 2001;33(3):616–626. doi: 10.1053/jhep.2001.22702. PubMed DOI
Xie Q, Khaoustov VI, Chung CC, Sohn J, Krishnan B, Lewis DE, Yoffe B. Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation. Hepatology. 2002;36(3):592–601. doi: 10.1053/jhep.2002.35441. PubMed DOI
Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, Hotamisligil GS. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313(5790):1137–1140. doi: 10.1126/science.1128294. PubMed DOI PMC
Lapenna D, Ciofani G, Festi D, Neri M, Pierdomenico SD, Giamberardino MA, Cuccurullo F. Antioxidant properties of ursodeoxycholic acid. Biochem Pharmacol. 2002;64(11):1661–1667. doi: 10.1016/S0006-2952(02)01391-6. PubMed DOI
Mitsuyoshi H, Nakashima T, Sumida Y, Yoh T, Nakajima Y, Ishikawa H, Inaba K, Sakamoto Y, Okanoue T, Kashima K. Ursodeoxycholic acid protects hepatocytes against oxidative injury via induction of antioxidants. Biochem Biophys Res Commun. 1999;263(2):537–542. doi: 10.1006/bbrc.1999.1403. PubMed DOI
Zhou Y, Doyen R, Lichtenberger LM. The role of membrane cholesterol in determining bile acid cytotoxicity and cytoprotection of ursodeoxycholic acid. Biochim Biophys Acta. 2009;1788(2):507–513. doi: 10.1016/j.bbamem.2008.12.008. PubMed DOI PMC
Amaral JD, Castro RE, Sola S, Steer CJ, Rodrigues CM. Ursodeoxycholic acid modulates the ubiquitin-proteasome degradation pathway of p53. Biochem Biophys Res Commun. 2010;400(4):649–654. doi: 10.1016/j.bbrc.2010.08.121. PubMed DOI
Heuman DM, Pandak WM, Hylemon PB, Vlahcevic ZR. Conjugates of ursodeoxycholate protect against cytotoxicity of more hydrophobic bile salts: in vitro studies in rat hepatocytes and human erythrocytes. Hepatology. 1991;14(5):920–926. doi: 10.1002/hep.1840140527. PubMed DOI
Hillaire S, Boucher E, Calmus Y, Gane P, Ballet F, Franco D, Moukthar M, Poupon R. Effects of bile acids and cholestasis on major histocompatibility complex class I in human and rat hepatocytes. Gastroenterol. 1994;107(3):781–788. doi: 10.1016/0016-5085(94)90127-9. PubMed DOI
Theret N, Musso O, Turlin B, Lotrian D, Bioulac-Sage P, Campion JP, Boudjema K, Clement B. Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas. Hepatology. 2001;34(1):82–88. doi: 10.1053/jhep.2001.25758. PubMed DOI
Scheller J, Chalaris A, Garbers C, Rose-John S. ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol. 2011;32(8):380–387. doi: 10.1016/j.it.2011.05.005. PubMed DOI
Doggrell SA. TACE inhibition: a new approach to treating inflammation. Expert Opin Investig Drugs. 2002;11(7):1003–1006. doi: 10.1517/13543784.11.7.1003. PubMed DOI
Moss ML, Sklair-Tavron L, Nudelman R. Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nat Clin Pract Rheumatol. 2008;4(6):300–309. PubMed
de Meijer VE, Sverdlov DY, Popov Y, Le HD, Meisel JA, Nose V, Schuppan D, Puder M. Broad-spectrum matrix metalloproteinase inhibition curbs inflammation and liver injury but aggravates experimental liver fibrosis in mice. PloS one. 2010;5(6):e11256. doi: 10.1371/journal.pone.0011256. PubMed DOI PMC
Amour A, Slocombe PM, Webster A, Butler M, Knight CG, Smith BJ, Stephens PE, Shelley C, Hutton M, Knauper V. et al.TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett. 1998;435(1):39–44. doi: 10.1016/S0014-5793(98)01031-X. PubMed DOI
Mohammed FF, Smookler DS, Taylor SE, Fingleton B, Kassiri Z, Sanchez OH, English JL, Matrisian LM, Au B, Yeh WC. et al.Abnormal TNF activity in Timp3-/- mice leads to chronic hepatic inflammation and failure of liver regeneration. Nat Genet. 2004;36(9):969–977. doi: 10.1038/ng1413. PubMed DOI
Neuman M, Angulo P, Malkiewicz I, Jorgensen R, Shear N, Dickson ER, Haber J, Katz G, Lindor K. Tumor necrosis factor-alpha and transforming growth factor-beta reflect severity of liver damage in primary biliary cirrhosis. J Gastroenterol Hepatol. 2002;17(2):196–202. doi: 10.1046/j.1440-1746.2002.02672.x. PubMed DOI
Ishizaki K, Iwaki T, Kinoshita S, Koyama M, Fukunari A, Tanaka H, Tsurufuji M, Sakata K, Maeda Y, Imada T. et al.Ursodeoxycholic acid protects concanavalin A-induced mouse liver injury through inhibition of intrahepatic tumor necrosis factor-alpha and macrophage inflammatory protein-2 production. Eur J Pharmacol. 2008;578(1):57–64. doi: 10.1016/j.ejphar.2007.08.031. PubMed DOI
Osmanagic-Myers S, Gregor M, Walko G, Burgstaller G, Reipert S, Wiche G. Plectin-controlled keratin cytoarchitecture affects MAP kinases involved in cellular stress response and migration. J Cell Biol. 2006;174(4):557–568. doi: 10.1083/jcb.200605172. PubMed DOI PMC
Chalupsky K, Kanchev I, Zbodakova O, Buryova H, Jirouskova M, Korinek V, Gregor M, Sedlacek R. ADAM10/17-Dependent Release of Soluble c-Met Correlates with Hepatocellular Damage. Folia Biol. 2013;59(2):76–86. PubMed
Sadowski T, Dietrich S, Koschinsky F, Sedlacek R. Matrix metalloproteinase 19 regulates insulin-like growth factor-mediated proliferation, migration, and adhesion in human keratinocytes through proteolysis of insulin-like growth factor binding protein-3. Mol Biol Cell. 2003;14(11):4569–4580. doi: 10.1091/mbc.E03-01-0009. PubMed DOI PMC
Constandinou C, Henderson N, Iredale JP. Modeling liver fibrosis in rodents. Methods Mol Med. 2005;117:237–250. PubMed
Kveiborg M, Instrell R, Rowlands C, Howell M, Parker PJ. PKCalpha and PKCdelta regulate ADAM17-mediated ectodomain shedding of heparin binding-EGF through separate pathways. PloS one. 2011;6(2):e17168. doi: 10.1371/journal.pone.0017168. PubMed DOI PMC
Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, Yu RT, Shelton JM, Richardson JA, Repa JJ. et al.Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A. 2006;103(10):3920–3925. doi: 10.1073/pnas.0509592103. PubMed DOI PMC
Moss ML, Rasmussen FH. Fluorescent substrates for the proteinases ADAM17, ADAM10, ADAM8, and ADAM12 useful for high-throughput inhibitor screening. Anal Biochem. 2007;366(2):144–148. doi: 10.1016/j.ab.2007.04.043. PubMed DOI
Massague J, Pandiella A. Membrane-anchored growth factors. Annu Rev Biochem. 1993;62:515–541. doi: 10.1146/annurev.bi.62.070193.002503. PubMed DOI
Park S, Jung HH, Park YH, Ahn JS, Im YH. ERK/MAPK pathways play critical roles in EGFR ligands-induced MMP1 expression. Biochem Biophys Res Commun. 2011;407(4):680–686. doi: 10.1016/j.bbrc.2011.03.075. PubMed DOI
Zheng Y, Saftig P, Hartmann D, Blobel C. Evaluation of the contribution of different ADAMs to tumor necrosis factor alpha (TNFalpha) shedding and of the function of the TNFalpha ectodomain in ensuring selective stimulated shedding by the TNFalpha convertase (TACE/ADAM17) J Biol Chem. 2004;279(41):42898–42906. doi: 10.1074/jbc.M403193200. PubMed DOI
Knittel T, Mehde M, Grundmann A, Saile B, Scharf JG, Ramadori G. Expression of matrix metalloproteinases and their inhibitors during hepatic tissue repair in the rat. Histochem Cell Biol. 2000;113(6):443–453. PubMed
Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 2007;117(3):524–529. doi: 10.1172/JCI31487. PubMed DOI PMC
Jirouskova M, Zbodakova O, Gregor M, Chalupsky K, Sarnova L, Hajduch M, Ehrmann J, Jirkovska M, Sedlacek R. Hepatoprotective Effect of MMP-19 Deficiency in a Mouse Model of Chronic Liver Fibrosis. PloS one. 2012;7(10):e46271. doi: 10.1371/journal.pone.0046271. PubMed DOI PMC
Roderfeld M, Graf J, Giese B, Salguero-Palacios R, Tschuschner A, Muller-Newen G, Roeb E. Latent MMP-9 is bound to TIMP-1 before secretion. Biol Chem. 2007;388(11):1227–1234. PubMed
Alpini G, Baiocchi L, Glaser S, Ueno Y, Marzioni M, Francis H, Phinizy JL, Angelico M, Lesage G. Ursodeoxycholate and tauroursodeoxycholate inhibit cholangiocyte growth and secretion of BDL rats through activation of PKC alpha. Hepatology. 2002;35(5):1041–1052. doi: 10.1053/jhep.2002.32712. PubMed DOI
He H, Mennone A, Boyer JL, Cai SY. Combination of retinoic acid and ursodeoxycholic acid attenuates liver injury in bile duct-ligated rats and human hepatic cells. Hepatology. 2011;53(2):548–557. doi: 10.1002/hep.24047. PubMed DOI PMC
Combes B, Carithers RL Jr, Maddrey WC, Munoz S, Garcia-Tsao G, Bonner GF, Boyer JL, Luketic VA, Shiffman ML, Peters MG. et al.Biliary bile acids in primary biliary cirrhosis: effect of ursodeoxycholic acid. Hepatology. 1999;29(6):1649–1654. doi: 10.1002/hep.510290618. PubMed DOI PMC
Kaplan MM, Gershwin ME. Primary biliary cirrhosis. N Engl J Med. 2005;353(12):1261–1273. doi: 10.1056/NEJMra043898. PubMed DOI
Lindor KD, Kowdley KV, Luketic VA, Harrison ME, McCashland T, Befeler AS, Harnois D, Jorgensen R, Petz J, Keach J. et al.High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology. 2009;50(3):808–814. doi: 10.1002/hep.23082. PubMed DOI PMC
Murthy A, Defamie V, Smookler DS, Di Grappa MA, Horiuchi K, Federici M, Sibilia M, Blobel CP, Khokha R. Ectodomain shedding of EGFR ligands and TNFR1 dictates hepatocyte apoptosis during fulminant hepatitis in mice. J Clin Invest. 2010;120(8):2731–2744. doi: 10.1172/JCI42686. PubMed DOI PMC
Weber S, Saftig P. Ectodomain shedding and ADAMs in development. Development. 2012;139(20):3693–3709. doi: 10.1242/dev.076398. PubMed DOI
Fitzgerald ML, Wang Z, Park PW, Murphy G, Bernfield M. Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J Cell Biol. 2000;148(4):811–824. doi: 10.1083/jcb.148.4.811. PubMed DOI PMC
Doedens JR, Mahimkar RM, Black RA. TACE/ADAM-17 enzymatic activity is increased in response to cellular stimulation. Biochem Biophys Res Commun. 2003;308(2):331–338. doi: 10.1016/S0006-291X(03)01381-0. PubMed DOI
Kopitz C, Gerg M, Bandapalli OR, Ister D, Pennington CJ, Hauser S, Flechsig C, Krell HW, Antolovic D, Brew K. et al.Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res. 2007;67(18):8615–8623. doi: 10.1158/0008-5472.CAN-07-0232. PubMed DOI
Yang Y, Wang Y, Zeng X, Ma XJ, Zhao Y, Qiao J, Cao B, Li YX, Ji L, Wang YL. Self-Control of HGF Regulation on Human Trophoblast Cell Invasion via Enhancing c-Met Receptor Shedding by ADAM10 and ADAM17. J Clin Endocrinol Metab. 2012;97(8):E1390–1401. doi: 10.1210/jc.2012-1150. PubMed DOI
Son G, Hirano T, Seki E, Iimuro Y, Nukiwa T, Matsumoto K, Nakamura T, Fujimoto J. Blockage of HGF/c-Met system by gene therapy (adenovirus-mediated NK4 gene) suppresses hepatocellular carcinoma in mice. J Hepatol. 2006;45(5):688–695. doi: 10.1016/j.jhep.2006.04.011. PubMed DOI
Michalopoulos GK. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am J Pathol. 2010;176(1):2–13. doi: 10.2353/ajpath.2010.090675. PubMed DOI PMC
Goulis J, Leandro G, Burroughs AK. Randomised controlled trials of ursodeoxycholic-acid therapy for primary biliary cirrhosis: a meta-analysis. Lancet. 1999;354(9184):1053–1060. doi: 10.1016/S0140-6736(98)11293-X. PubMed DOI