Linear-Nonlinear Stiffness Responses of Carbon Fiber-Reinforced Polymer Composite Materials and Structures: A Numerical Study

. 2021 Jan 22 ; 13 (3) : . [epub] 20210122

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33498984

The stiffness response or load-deformation/displacement behavior is the most important mechanical behavior that frequently being utilized for validation of the mathematical-physical models representing the mechanical behavior of solid objects in numerical method, compared to actual experimental data. This numerical study aims to investigate the linear-nonlinear stiffness behavior of carbon fiber-reinforced polymer (CFRP) composites at material and structural levels, and its dependency to the sets of individual/group elastic and damage model parameters. In this regard, a validated constitutive damage model, elastic-damage properties as reference data, and simulation process, that account for elastic, yielding, and damage evolution, are considered in the finite element model development process. The linear-nonlinear stiffness responses of four cases are examined, including a unidirectional CFRP composite laminate (material level) under tensile load, and also three multidirectional composite structures under flexural loads. The result indicated a direct dependency of the stiffness response at the material level to the elastic properties. However, the stiffness behavior of the composite structures depends both on the structural configuration, geometry, lay-ups as well as the mechanical properties of the CFRP composite. The value of maximum reaction force and displacement of the composite structures, as well as the nonlinear response of the structures are highly dependent not only to the mechanical properties, but also to the geometry and the configuration of the structures.

Zobrazit více v PubMed

Koloor S.S.R., Khosravani M.R., Hamzah R., Tamin M. FE model-based construction and progressive damage processes of FRP composite laminates with different manufacturing processes. Int. J. Mech. Sci. 2018;141:223–235. doi: 10.1016/j.ijmecsci.2018.03.028. DOI

Rangappa S.M., Parameswaranpillai J., Siengchin S., Kroll L. Lightweight Polymer Composite Structure: Design and Manufacturing Techniques. CRC Press; Boca Raton, FL, USA: 2020.

Kaddour A., Hinton M., Smith P., Li S. The background to the third world-wide failure exercise. J. Compos. Mater. 2013;47:2417–2426. doi: 10.1177/0021998313499475. DOI

Hinton M.J., Kaddour A.S., Soden P.D. Failure Criteria in Fibre Reinforced Polymer Composites: The World-Wide Failure Exercise. Elsevier; Amsterdam, The Netherlands: 2004.

Pidaparti R.M. Engineering Finite Element Analysis. Morgan & Claypool Publishers; San Rafael, CA, USA: 2017.

Schuecker C., Pettermann H.E. A continuum damage model for fiber reinforced laminates based on ply failure mechanisms. Compos. Struct. 2006;76:162–173. doi: 10.1016/j.compstruct.2006.06.023. DOI

Hallett S.R., Jiang W.-G., Khan B., Wisnom M.R. Modelling the interaction between matrix cracks and delamination damage in scaled quasi-isotropic specimens. Compos. Sci. Technol. 2008;68:80–89. doi: 10.1016/j.compscitech.2007.05.038. DOI

Koloor S.S.R., Tamin M. Mode-II interlaminar fracture and crack-jump phenomenon in CFRP composite laminate materials. Compos. Struct. 2018;204:594–606. doi: 10.1016/j.compstruct.2018.07.132. DOI

Lopes B., Arruda M.R.T., Almeida-Fernandes L., Castro L., Silvestre N., Correia J.R. Assessment of mesh dependency in the numerical simulation of compact tension tests for orthotropic materials. Compos. Part C Open Access. 2020;1:100006. doi: 10.1016/j.jcomc.2020.100006. DOI

Ng T.P., Koloor R.S.S., Djuansjah J.R.P., Abdul K.M.R. Assessment of compressive failure process of cortical bone materials using damage-based model. J. Mech. Behav. Biomed. Mater. 2017;66:1–11. doi: 10.1016/j.jmbbm.2016.10.014. PubMed DOI

Karimzadeh A., Koloor S.S.R., Ayatollahi M.R., Bushroa A.R., Yahya M.Y. Assessment of nano-indentation method in mechanical characterization of heterogeneous nanocomposite materials using experimental and computational approaches. Sci. Rep. 2019;9:1–14. doi: 10.1038/s41598-019-51904-4. PubMed DOI PMC

Rahimian K.S.S., Karimzadeh A., Tamin M.N., Abd S.M.H. Effects of sample and indenter configurations of nanoindentation experiment on the mechanical behavior and properties of ductile materials. Metals. 2018;8:421. doi: 10.3390/met8060421. DOI

Koloor S.S.R., Rahimian-Koloor S.M., Karimzadeh A., Hamdi M., Petrů M., Tamin M. Nano-level damage characterization of graphene/polymer cohesive interface under tensile separation. Polymers. 2019;11:1435. doi: 10.3390/polym11091435. PubMed DOI PMC

Bassiri N.A., Farokhi N.A., Xin L., Ayob A., Yahya M.Y., R. Koloor S.S., Petrů M., Abu H.S. Dynamic response of aluminium sheet 2024-T3 subjected to close-range shock wave: Experimental and numerical studies. J. Mater. Res. Technol. 2021;10:349–362. doi: 10.1016/j.jmrt.2020.12.029. DOI

Khan M.S., Abdul-Latif A., Koloor S.S.R., Petrů M., Tamin M.N. Representative Cell Analysis for Damage-Based Failure Model of Polymer Hexagonal Honeycomb Structure under the Out-of-Plane Loadings. Polymers. 2020;13:52. doi: 10.3390/polym13010052. PubMed DOI PMC

Congro M., Roehl D., Mejia C. Mesoscale computational modeling of the mechanical behavior of cement composite materials. Compos. Struct. 2021;257:113137. doi: 10.1016/j.compstruct.2020.113137. DOI

Koloor S.S.R., Ayatollahi M.R., Tamin M.N. Elastic-damage deformation response of fiber-reinforced polymer composite laminates with lamina interfaces. J. Reinf. Plast. Compos. 2017;36:832–849. doi: 10.1177/0731684417693427. DOI

Kolanu N.R., Raju G., Ramji M. A unified numerical approach for the simulation of intra and inter laminar damage evolution in stiffened CFRP panels under compression. Compos. Part B Eng. 2020;190:107931. doi: 10.1016/j.compositesb.2020.107931. DOI

Lapczyk I., Hurtado J.A. Progressive damage modeling in fiber-reinforced materials. Compos. Part A Appl. Sci. Manuf. 2007;38:2333–2341. doi: 10.1016/j.compositesa.2007.01.017. DOI

Eyer G., Montagnier O., Hochard C., Charles J.P. Effect of matrix damage on compressive strength in the fiber direction for laminated composites. Compos. Part A Appl. Sci. Manuf. 2017;94:86–92. doi: 10.1016/j.compositesa.2016.12.012. DOI

Higuchi R., Okabe T., Nagashima T. Numerical simulation of progressive damage and failure in composite laminates using XFEM/CZM coupled approach. Compos. Part A Appl. Sci. Manuf. 2017;95:197–207. doi: 10.1016/j.compositesa.2016.12.026. DOI

Chang F.-K., Lessard L.B. Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings: Part I—Analysis. J. Compos. Mater. 1991;25:2–43. doi: 10.1177/002199839102500101. DOI

Greszczuk L. Proceeding of the Composite Materials: Testing and Design (Third Conference), Williamsburg, VA, USA, 21–22 March 1973. ASTM International; West Conshohocken, PA, USA: 1974. Microbuckling of lamina-reinforced composites.

Puck A., Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 2002;62:1633–1662. doi: 10.1016/S0266-3538(01)00208-1. DOI

Lee J.D. Three dimensional finite element analysis of damage accumulation in composite laminate. Comput. Struct. 1982;15:335–350. doi: 10.1016/0045-7949(82)90026-8. DOI

Hashin Z., Rotem A. A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 1973;7:448–464. doi: 10.1177/002199837300700404. DOI

Shahid I., Chang F.-K. An accumulative damage model for tensile and shear failures of laminated composite plates. J. Compos. Mater. 1995;29:926–981. doi: 10.1177/002199839502900705. DOI

Maimí P., Camanho P.P., Mayugo J., Dávila C. A continuum damage model for composite laminates: Part I–Constitutive model. Mech. Mater. 2007;39:897–908. doi: 10.1016/j.mechmat.2007.03.005. DOI

Murakami S. Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture. Volume 185 Springer Science & Business Media; Berlin/Heidelberg, Germany: 2012.

Kachanov L. Introduction to Continuum Damage Mechanics. Volume 10 Springer Science & Business Media; Berlin/Heidelberg, Germany: 2013.

Xue J., Kirane K. Effect of the Shape of the Softening Damage Law on the Predicted Fracturing Behavior of Composites; Proceedings of the American Society for Composites—Thirty-Fifth Technical Conference; Hoboken, NJ, USA. 14–17 September 2020.

Kaw A.K. Mechanics of Composite Materials. CRC Press; Boca Raton, FL, USA: 2005.

ASTM D4762–08, Standard Guide for Testing Polymer Matrix Composite Materials. [(accessed on 10 December 2020)];2008 Available online: https://www.astm.org/Standards/D4762.htm.

Koloor R.S.S. Ph.D. Degree. Universiti Teknologi Malaysia; Johor, Malaysia: 2016. Simulation Methodology for Fracture Processes of Composite Laminates Using Damage-Based Models.

Hashin Z. Failure criteria for unidirectional fiber composites. J. Appl. Mech. 1980;47:329–334. doi: 10.1115/1.3153664. DOI

Orifici A., Herszberg I., Thomson R. Review of methodologies for composite material modelling incorporating failure. Compos. Struct. 2008;86:194–210. doi: 10.1016/j.compstruct.2008.03.007. DOI

ABAQUS-6.9EF. Theory Manual. [(accessed on 21 January 2021)];2010 Available online: http://130.149.89.49:2080/v6.9ef/index.html.

Hinton M., Kaddour A. The background to the Second World-Wide Failure Exercise. J. Compos. Mater. 2012;46:2283–2294. doi: 10.1177/0021998312449885. DOI

Chaboche J. The Concept of Effective Stress Applied Elasticity and to Viscoplasticity in Presence of Anisotropic Damage. Royal Aircraft Establishment; Farnborough, UK: 1979. pp. 737–760.

Pinho S.T. Ph.D. Thesis. Imperial College; London, UK: 2005. Modelling Failure of Laminated Composites Using Physically-Based Failure Models.

Camanho P.P., Dávila C.G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA Tech. Pap. 2002;211737:33.

Matzenmiller A., Lubliner J., Taylor R. A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 1995;20:125–152. doi: 10.1016/0167-6636(94)00053-0. DOI

Kaddour A., Hinton M., Smith P., Li S. A comparison between the predictive capability of matrix cracking, damage and failure criteria for fibre reinforced composite laminates: Part A of the third world-wide failure exercise. J. Compos. Mater. 2013;47:2749–2779. doi: 10.1177/0021998313499476. DOI

Koloor R.S.S., Tamin M. Proceedings of the 8th Asian-Australasian Conference on Composite Materials 2012, ACCM 2012—Composites: Enabling Tomorrow’s Industry Today, Kuala Lumpur, Malaysia, 6–8 November 2012. Vol. 1. Asian Australasian Association for Composite Materials (AACM); Red Hook, NY, USA: 2013. Effects of lamina damages on flexural stiffness of CFRP composites; pp. 237–243.

Koloor R.S.S., Karimzadeh A., Yidris N., Petrů M., Ayatollahi M.R., Tamin M.N. An energy-based concept for yielding of multidirectional FRP composite structures using a mesoscale lamina damage model. Polymers. 2020;12:157. doi: 10.3390/polym12010157. PubMed DOI PMC

Varvani-Farahani A., Haftchenari H., Panbechi M. An energy-based fatigue damage parameter for off-axis unidirectional FRP composites. Compos. Struct. 2007;79:381–389. doi: 10.1016/j.compstruct.2006.02.013. DOI

Wang Y., Wong P., Kodur V. An experimental study of the mechanical properties of fibre reinforced polymer (FRP) and steel reinforcing bars at elevated temperatures. Compos. Struct. 2007;80:131–140. doi: 10.1016/j.compstruct.2006.04.069. DOI

Vermeulen B., Van Tooren M. Design case study for a comparative performance analysis of aerospace materials. Mater. Des. 2006;27:10–20. doi: 10.1016/j.matdes.2004.09.022. DOI

Camanho P.P., Fink A., Obst A., Pimenta S. Hybrid titanium–CFRP laminates for high-performance bolted joints. Compos. Part A Appl. Sci. Manuf. 2009;40:1826–1837. doi: 10.1016/j.compositesa.2009.02.010. DOI

Oya N., Hamada H. Mechanical properties and failure mechanisms of carbon fibre reinforced thermoplastic laminates. Compos. Part A Appl. Sci. Manuf. 1997;28:823–832. doi: 10.1016/S1359-835X(97)00035-3. DOI

Kumar S.B., Sridhar I., Sivashanker S., Osiyemi S., Bag A. Tensile failure of adhesively bonded CFRP composite scarf joints. Mater. Sci. Eng. B. 2006;132:113–120. doi: 10.1016/j.mseb.2006.02.046. DOI

Wang S.-X., Wu L.-Z., Ma L. Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates. Mater. Des. 2010;31:118–125. doi: 10.1016/j.matdes.2009.07.003. DOI

Fan J., Guan Z., Cantwell W. Numerical modelling of perforation failure in fibre metal laminates subjected to low velocity impact loading. Compos. Struct. 2011;93:2430–2436. doi: 10.1016/j.compstruct.2011.04.008. DOI

Koloor R.S.S., Abdul-Latif A., Tamin M.N. Mechanics of Composite Delamination under Flexural Loading. Key Eng. Mater. 2011;462:726–731. doi: 10.4028/www.scientific.net/KEM.462-463.726. DOI

Koloor R.S.S., Redzuan N., Tamin M.N. Shear-dominated Interlaminar Fracture Process in CFRP Composite Laminates; Proceedings of the 9th International Conference on Fracture & Strength of Solids; Jeju Island, Korea. 9–13 June 2013.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...