Assessment of Nano-Indentation Method in Mechanical Characterization of Heterogeneous Nanocomposite Materials Using Experimental and Computational Approaches
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31673118
PubMed Central
PMC6823492
DOI
10.1038/s41598-019-51904-4
PII: 10.1038/s41598-019-51904-4
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
This study investigates the capacity of the nano-indentation method in the mechanical characterization of a heterogeneous dental restorative nanocomposite using experimental and computational approaches. In this respect, Filtek Z350 XT was selected as a nano-particle reinforced polymer nanocomposite with a specific range of the particle size (50 nm to 4 µm), within the range of indenter contact area of the nano-indentation experiment. A Sufficient number of nano-indentation tests were performed in various locations of the nanocomposite to extract the hardness and elastic modulus properties. A hybrid computational-experimental approach was developed to examine the extracted properties by linking the internal behaviour and the global response of the nanocomposite. In the computational part, several representative models of the nanocomposite were created in a finite element environment to simulate the mechanism of elastic-plastic deformation of the nanocomposite under Berkovich indenter. Dispersed values of hardness and elastic modulus were obtained through the experiment with 26.8 and 48.5 percent average errors, respectively, in comparison to the nanocomposite properties, respectively. A disordered shape was predicted for plastic deformation of the equilateral indentation mark, representing the interaction of the particles and matrix, which caused the experiment results reflect the local behaviour of the nanocomposite instead of the real material properties.
See more in PubMed
Fischer-Cripps, A. C. Nanoindentation. (Springer, 2013).
Jiapeng S, Cheng L, Han J, Ma A, Fang L. Nanoindentation Induced Deformation and Pop-in Events in a Silicon Crystal: Molecular Dynamics Simulation and Experiment. Scientific Reports. 2017;7:10282. doi: 10.1038/s41598-017-11130-2. PubMed DOI PMC
Liu M, Lu C, Tieu KA, Peng C-T, Kong C. A combined experimental-numerical approach for determining mechanical properties of aluminum subjects to nanoindentation. Scientific Reports. 2015;5:15072. doi: 10.1038/srep15072. PubMed DOI PMC
Karimzadeh A, Ayatollahi MR, Alizadeh M. Finite element simulation of nano-indentation experiment on aluminum 1100. Computational Materials Science. 2014;81:595–600. doi: 10.1016/j.commatsci.2013.09.019. DOI
Rahimian Koloor, S., Karimzadeh, A., Tamin, M. & Abd Shukor, M. Effects of Sample and Indenter Configurations of Nanoindentation Experiment on the Mechanical Behavior and Properties of Ductile Materials. Metals8 (2018).
Chen X, Ashcroft IA, Wildman RD, Tuck CJ. A combined inverse finite element – elastoplastic modelling method to simulate the size-effect in nanoindentation and characterise materials from the nano to micro-scale. International Journal of Solids and Structures. 2017;104–105:25–34. doi: 10.1016/j.ijsolstr.2016.11.004. DOI
Karimzadeh A, Ayatollahi MR, Nikkhooyifar M, Bushroa AR. Nanomechanical properties and wear resistance of dental restorative materials. Structural Engineering and Mechanics. 2017;64:819–826.
Mesbah M, et al. Nano-mechanical properties and microstructure of UFG brass tubes processed by parallel tubular channel angular pressing. Metals and Materials International. 2016;22:1098–1107. doi: 10.1007/s12540-016-6152-0. DOI
Ayatollahi MR, Karimzadeh A. Nano-Indentation Measurement of Fracture Toughness of Dental Enamel. International Journal of Fracture. 2013;183:113–118. doi: 10.1007/s10704-013-9864-x. DOI
Wang Z, Wang K, Xu W, Gong X, Zhang F. Mapping the mechanical gradient of human dentin-enamel-junction at different intratooth locations. Dental Materials. 2018;34:376–388. doi: 10.1016/j.dental.2017.11.001. PubMed DOI
Kurpaska L, et al. Influence of Ar-irradiation on structural and nanomechanical properties of pure zirconium measured by means of GIXRD and nanoindentation techniques. Journal of Molecular Structure. 2016;1126:226–231. doi: 10.1016/j.molstruc.2016.03.053. DOI
Bhushan B, Li XD. Nanomechanical characterisation of solid surfaces and thin films. Int Mater Rev. 2003;48:125–164. doi: 10.1179/095066003225010227. DOI
Zha Chao, Hu Jianhua, Li Ainong, Huang Shangyu, Liu Hanxing, Chen Gang, Zhang Zuoqi, Li Bei, Wang Zhengzhi. Nanoindentation study on mechanical properties and curing depth of dental resin nanocomposites. Polymer Composites. 2018;40(4):1473–1480. doi: 10.1002/pc.24886. DOI
Karimzadeh A, Ayatollahi MR. Investigation of mechanical and tribological properties of bone cement by nano-indentation and nano-scratch experiments. Polymer Testing. 2012;31:828–833. doi: 10.1016/j.polymertesting.2012.06.002. DOI
Koumoulos EP, Jagadale P, Lorenzi A, Tagliaferro A, Charitidis CA. Evaluation of surface properties of epoxy–nanodiamonds composites. Composites Part B: Engineering. 2015;80:27–36. doi: 10.1016/j.compositesb.2015.05.036. DOI
Yahaya MZ, et al. Hardness profiles of Sn-3.0Ag-0.5Cu-TiO2 composite solder by nanoindentation. Materials Science and Engineering: A. 2016;669:178–186. doi: 10.1016/j.msea.2016.05.081. DOI
Alzarrug FA, et al. The use of different alumina fillers for improvement of the mechanical properties of hybrid PMMA composites. Materials & Design. 2015;86:575–581. doi: 10.1016/j.matdes.2015.07.069. DOI
Masouras K, Akhtar R, Watts DC, Silikas N. Effect of filler size and shape on local nanoindentation modulus of resin-composites. Journal of Materials Science: Materials in Medicine. 2008;19:3561–3566. PubMed
Asgharzadeh Shirazi H, Ayatollahi MR, Naimi-Jamal MR. Influence of Hydroxyapatite Nano-particles on the Mechanical and Tribological Properties of Orthopedic Cement-Based Nano-composites Measured by Nano-indentation and Nano-scratch Experiments. Journal of Materials Engineering and Performance. 2015;24:3300–3306. doi: 10.1007/s11665-015-1593-z. DOI
Attar H, et al. Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting. Materials Science and Engineering: A. 2017;688:20–26. doi: 10.1016/j.msea.2017.01.096. DOI
Peskersoy C, Culha O. Comparative Evaluation of Mechanical Properties of Dental Nanomaterials. Journal of Nanomaterials. 2017;2017:1–8. doi: 10.1155/2017/6171578. DOI
Mohamad D, Young R, Mann A, Watts D. Post-polymerization of dental resin composite evaluated with nanoindentation and micro-Raman spectroscopy. Archives of Orofacial Sciences. 2007;2:26–32.
El-Safty S, Akhtar R, Silikas N, Watts DC. Nanomechanical properties of dental resin-composites. Dental Materials. 2012;28:1292–1300. doi: 10.1016/j.dental.2012.09.007. PubMed DOI
Wang ZZ, Gu P, Zhang Z. Indentation and scratch behavior of nano-SiO2/polycarbonate composite coating at the micro/nano-scale. Wear. 2010;269:21–25. doi: 10.1016/j.wear.2010.03.003. DOI
Wang ZZ, Gu P, Zhang Z, Gu L, Xu YZ. Mechanical and Tribological Behavior of Epoxy/Silica Nanocomposites at the Micro/Nano Scale. Tribology Letters. 2011;42:185–191. doi: 10.1007/s11249-011-9762-1. DOI
Nath S, Dey A, Mukhopadhyay AK, Basu B. Nanoindentation response of novel hydroxyapatite–mullite composites. Materials Science and Engineering: A. 2009;513–514:197–201. doi: 10.1016/j.msea.2009.02.052. DOI
Stanishevsky A, Chowdhury S, Chinoda P, Thomas V. Hydroxyapatite nanoparticle loaded collagen fiber composites: Microarchitecture and nanoindentation study. Journal of Biomedical Materials Research Part A. 2008;86A:873–882. doi: 10.1002/jbm.a.31657. PubMed DOI
Lahijania YZK, Mohseni M, Bastani S. Characterization of mechanical behavior of UV cured urethane acrylate nanocomposite films loaded with silane treated nanosilica by the aid of nanoindentation and nanoscratch experiments. Tribology International. 2014;69:10–18. doi: 10.1016/j.triboint.2013.08.010. DOI
Drummond JL. Nanoindentation of dental composites. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2006;78B:27–34. doi: 10.1002/jbm.b.30442. PubMed DOI
Constantinides G, Ravi Chandran KS, Ulm FJ, Van Vliet KJ. Grid indentation analysis of composite microstructure and mechanics: Principles and validation. Materials Science and Engineering: A. 2006;430:189–202. doi: 10.1016/j.msea.2006.05.125. DOI
Constantinides, G. & Ulm, F. J. Invariant mechanical properties of calcium-silicate-hydrates (C-S-H) in cement-based materials: Instrumented nanoindentation and microporomechanical modeling. (Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, 2006).
Randall NX, Vandamme M, Ulm FJ. Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces. Journal of Materials Research. 2009;24:679–690. doi: 10.1557/jmr.2009.0149. DOI
Ayatollahi MR, Yahya MY, Karimzadeh A, Nikkhooyifar M, Ayob A. Effects of temperature change and beverage on mechanical and tribological properties of dental restorative composites. Materials Science and Engineering: C. 2015;54:69–75. doi: 10.1016/j.msec.2015.05.004. PubMed DOI
Freilich MA, Karmaker AC, Burstone CJ, Goldberg AJ. Development and clinical applications of a light-polymerized fiber-reinforced composite. The Journal of Prosthetic Dentistry. 1998;80:311–318. doi: 10.1016/S0022-3913(98)70131-3. PubMed DOI
Wang L, D’Alpino PHP, Lopes LG, Pereira JC. Mechanical properties of dental restorative materials: relative contribution of laboratory tests. Journal of Applied Oral Science. 2003;11:162–167. doi: 10.1590/S1678-77572003000300002. PubMed DOI
Patel DK, Kalidindi SR. Correlation of spherical nanoindentation stress-strain curves to simple compression stress-strain curves for elastic-plastic isotropic materials using finite element models. Acta Materialia. 2016;112:295–302. doi: 10.1016/j.actamat.2016.04.034. DOI
Wang Z, Gu P, Zhang H, Zhang Z, Wu X. Finite Element Modeling of the Indentation and Scratch Response of Epoxy/Silica Nanocomposites. Mechanics of Advanced Materials and Structures. 2014;21:802–809. doi: 10.1080/15376494.2012.707752. DOI
Wang Z, Gu P, Zhang H, Zhang Z, Wu X. Indenter geometrical effects on sub-micro/nano indentation and scratch behaviors of polymeric surfaces. Mechanics of Advanced Materials and Structures. 2016;23:291–300. doi: 10.1080/15376494.2014.955154. DOI
Koloor SSR, Ayatollahi MR, Tamin MN. Elastic-damage deformation response of fiber-reinforced polymer composite laminates with lamina interfaces. Journal of Reinforced Plastics and Composites. 2017;36:832–849. doi: 10.1177/0731684417693427. DOI
R. Koloor SS, Khosravani MR, Hamzah RIR, Tamin MN. FE model-based construction and progressive damage processes of FRP composite laminates with different manufacturing processes. International Journal of Mechanical Sciences. 2018;141:223–235. doi: 10.1016/j.ijmecsci.2018.03.028. DOI
Sharifi Kia D, Willing R. Development of a hybrid computational/experimental framework for evaluation of damage mechanisms of a linked semiconstrained total elbow system. Journal of Shoulder and Elbow Surgery. 2018;27:614–623. doi: 10.1016/j.jse.2017.10.020. PubMed DOI
Ng TP, R. Koloor SS, Djuansjah JRP, Abdul Kadir MR. Assessment of compressive failure process of cortical bone materials using damage-based model. Journal of the Mechanical Behavior of Biomedical Materials. 2017;66:1–11. doi: 10.1016/j.jmbbm.2016.10.014. PubMed DOI
Olivas ER, Swadener JG, Shen YL. Nanoindentation measurement of surface residual stresses in particle-reinforced metal matrix composites. Scripta Materialia. 2006;54:263–268. doi: 10.1016/j.scriptamat.2005.09.021. DOI
Pereyra R, Shen YL. Characterization of particle concentration in indentation-deformed metal-ceramic composites. Materials Characterization. 2004;53:373–380. doi: 10.1016/j.matchar.2004.08.006. DOI
Ekici R, Kemal Apalak M, Yıldırım M, Nair F. Effects of random particle dispersion and size on the indentation behavior of SiC particle reinforced metal matrix composites. Materials & Design. 2010;31:2818–2833. doi: 10.1016/j.matdes.2010.01.001. DOI
Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI
Liu, et al. Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites. Macromolecules. 2004;37:7214–7222. doi: 10.1021/ma049132t. DOI
Hu Y, et al. Nanoindentation studies on Nylon 11/clay nanocomposites. Polymer Testing. 2006;25:492–497. doi: 10.1016/j.polymertesting.2006.02.005. DOI
Chudoba T, Richter F. Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surface and Coatings Technology. 2001;148:191–198. doi: 10.1016/S0257-8972(01)01340-8. DOI
Ngan AHW, Wang HT, Tang B, Sze KY. Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation. International Journal of Solids and Structures. 2005;42:1831–1846. doi: 10.1016/j.ijsolstr.2004.07.018. DOI
Chung SM, Yap AU, Koh WK, Tsai KT, Lim CT. Measurement of Poisson’s ratio of dental composite restorative materials. Biomaterials. 2004;25:2455–2460. doi: 10.1016/j.biomaterials.2003.09.029. PubMed DOI
In TI 750 Ubi L, D, and H User Manual (ed. Hysitron) (Eden Prairie, 2012).
Karimzadeharani, A. Investigation on Orthodontic Bond Strength Using Experimental and Numerical Methods PhD thesis, Iran University of Science and Technology (2017).
In Product literature, EXOTHANE Elastomers (ed. ESSTECH Inc.) (Esstech, Inc., PO Box 39, 48 Powhattan Avenue, Essington, PA).
Abuelenain DA, Neel EAA, Al-Dharrab A. Surface and Mechanical Properties of Different Dental Composites. Austin Journal of Dentistry. 2015;2:1019–1024.
Lankfo, J. In 85th Annual Meeting, The American Ceramic Society C212–C213 (Communications of the American Ceramic Society Chicago, 1983).
Shackelford, J. & Doremus, R. H. 200 (Springer, New York, USA, 2008).
Ferracane JL, Greener EH. The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. Journal of Biomedical Materials Research. 1986;20:121–131. doi: 10.1002/jbm.820200111. PubMed DOI
Askikfgajer, V., Hainety, F. S. & Hainety, A. S. In Filtek™ Z350 XT Universal Restorative System, technical product profile (ed. 3M ESPE) (Country, 2010).
Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica. 1973;21:571–574. doi: 10.1016/0001-6160(73)90064-3. DOI
Százdi L, Pukánszky B, Vancso GJ, Pukánszky B. Quantitative estimation of the reinforcing effect of layered silicates in PP nanocomposites. Polymer. 2006;47:4638–4648. doi: 10.1016/j.polymer.2006.04.053. DOI
Bolshakov A, Pharr GM. Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. Journal of Materials Research. 1998;13:1049–1058. doi: 10.1557/JMR.1998.0146. DOI
Rosa RS, et al. Evaluation of mechanical properties on three nanofilled composites. Stomatologija, Baltic Dental and Maxillofacial Journal. 2012;14:126–130. PubMed
Sadat, S. et al. Effect of organic acids in dental biofilm on microhardness of a silorane-based composite. Restorative Dentistry & Endodontics, 1–7 (2015). PubMed PMC
Karimzadeh, A., Ayatollahi, M. R. & Rahimi, A. In Applied Nanoindentation in Advanced Materials (eds Tiwari, A. & Natarajan, S.) Ch. 24, (John Wiley & Sons Ltd, 2017).