Heat insulation effect in solar radiation of polyurethane powder coating nanocomposite
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
34667223
PubMed Central
PMC8526593
DOI
10.1038/s41598-021-00181-1
PII: 10.1038/s41598-021-00181-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This study aims to improve polyurethane-based coating by modified zirconium oxide and aluminum oxide nanoparticles for preparing thin polymeric heat insulation coatings. In the first step, the nanoparticles were chemically modified with the silane coupling agent. Then, three different weight percent of modified nanoparticles (1, 3, and 5% w/w) were mixed with polyurethane, to prepare the nanocomposites, which were coated on metallic plate samples. Then, these plates are used to measure the radiation heat transfer coefficients, absorption coefficient in a region of short wavelengths (UV/VIS/NIR), the emissivity coefficient, and thermography of the samples in a region of long wavelengths (IR). Results showed that by adding the modified nanoparticles to the polyurethane matrix, absorption was decreased and the emissivity coefficient was increased. According to the thermography results, it was observed that the surface temperature of both samples with 3% w/w of nanoparticles had the minimum temperature compare to others. Minimum heat surface observed for 3% w/w of modified nano zirconium oxide.
Department of Mechanical Engineering Abadan Branch Islamic Azad University Abadan 6317836531 Iran
Department of Resin and Additives Institute for Color Science and Technology Tehran 1668836471 Iran
Institute for Nanomaterials Advanced Technologies and Innovation 460 01 Liberec Czech Republic
Technical University of Liberec 460 01 Liberec Czech Republic
Zobrazit více v PubMed
Horie CV. Materials for Conservation: Organic Consolidants, Adhesives and Coatings. Routledge; 2010.
Nguyen TD, et al. Electrochromic smart glass coating on functional nano-frameworks for effective building energy conservation. Mater. Today Energy. 2020;18:100496. doi: 10.1016/j.mtener.2020.100496. DOI
Karimzadeh A, Koloor SSR, Ayatollahi MR, Bushroa AR, Yahya MY. Assessment of nano-indentation method in mechanical characterization of heterogeneous nanocomposite materials using experimental and computational approaches. Sci. Rep. 2019;9:1–14. doi: 10.1038/s41598-019-51904-4. PubMed DOI PMC
Rahimian Koloor SS, et al. An energy-based concept for yielding of multidirectional FRP composite structures using a mesoscale lamina damage model. Polymers. 2020;12:157. doi: 10.3390/polym12010157. PubMed DOI PMC
Synnefa A, Santamouris M, Livada I. A study of the thermal performance of reflective coatings for the urban environment. Sol. Energy. 2006;80:968–981. doi: 10.1016/j.solener.2005.08.005. DOI
Shen H, Tan H, Tzempelikos A. The effect of reflective coatings on building surface temperatures, indoor environment and energy consumption—An experimental study. Energy Build. 2011;43:573–580. doi: 10.1016/j.enbuild.2010.10.024. DOI
Sheikhzadeh G, Azemati A, Khorasanizadeh H, Hadavand BS, Saraei A. The effect of mineral micro particle in coating on energy consumption reduction and thermal comfort in a room with a radiation cooling panel in different climates. Energy Build. 2014;82:644–650. doi: 10.1016/j.enbuild.2014.07.043. DOI
Azemati AA, Hadavand BS, Hosseini H, Tajarrod AS. Thermal modeling of mineral insulator in paints for energy saving. Energy Build. 2013;56:109–114. doi: 10.1016/j.enbuild.2012.09.036. DOI
Wijewardane S, Goswami D. A review on surface control of thermal radiation by paints and coatings for new energy applications. Renew. Sustain. Energy Rev. 2012;16:1863–1873. doi: 10.1016/j.rser.2012.01.046. DOI
Rosenfeld AH, Akbari H, Romm JJ, Pomerantz M. Cool communities: Strategies for heat island mitigation and smog reduction. Energy Build. 1998;28:51–62. doi: 10.1016/S0378-7788(97)00063-7. DOI
Synnefa A, Santamouris M, Akbari H. Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy Build. 2007;39:1167–1174. doi: 10.1016/j.enbuild.2007.01.004. DOI
Mohammadi K, Khorasanizadeh H. A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities. Renew. Sustain. Energy Rev. 2015;47:504–518. doi: 10.1016/j.rser.2015.03.037. DOI
Emiliani, M. Development of measurement procedures for the evaluation of energy performances and ageing resistance of innovative cool coloured materials. (2014).
Joudi MA. Radiation Properties of Coil-Coated Steel in Building Envelope Surfaces and the Influence on Building Thermal Performance. Linköping University Electronic Press; 2015.
Ascione F, Bianco N, De Masi RF, Mauro GM, Vanoli GP. Design of the building envelope: A novel multi-objective approach for the optimization of energy performance and thermal comfort. Sustainability. 2015;7:10809–10836. doi: 10.3390/su70810809. DOI
Moaref M, Zolfaghari S, Omidvar A. Proper design of the facade and theouter shell of the building is an effective way to prevent the occurrence of condensation in the cooling system, radiant ceiling. Iran. J. Energy. 2006;10:3–18.
Jeevanandam P, et al. Near infrared reflectance properties of metal oxide nanoparticles. J. Phys. Chem. C. 2007;111:1912–1918. doi: 10.1021/jp066363o. DOI
Murphy A. Modified Kubelka-Munk model for calculation of the reflectance of coatings with optically-rough surfaces. J. Phys. D Appl. Phys. 2006;39:3571. doi: 10.1088/0022-3727/39/16/008. DOI
Liu F, Yang L, Han E. Effect of particle sizes and pigment volume concentrations on the barrier properties of polyurethane coatings. J. Coat. Technol. Res. 2010;7:301–313. doi: 10.1007/s11998-009-9203-3. DOI
Madhi A, Shirkavand Hadavand B, Amoozadeh A. Thermal conductivity and viscoelastic properties of UV-curable urethane acrylate reinforced with modified Al2O3 nanoparticles. Prog. Color Color. Coat. 2017;10:193–204.
Madhi A, Shirkavand Hadavand B, Amoozadeh A. UV-curable urethane acrylate zirconium oxide nanocomposites: Synthesis, study on viscoelastic properties and thermal behavior. J. Composite Mater. 2018;52:2973–2982. doi: 10.1177/0021998318756173. DOI
Tikhani F, et al. Polyurethane/silane-functionalized ZrO2 nanocomposite powder coatings: Thermal degradation kinetics. Coatings. 2020;10:413. doi: 10.3390/coatings10040413. DOI
Hadavand BS, et al. Silane-functionalized Al2O3-modified polyurethane powder coatings: Nonisothermal degradation kinetics and mechanistic insights. J. Appl. Polym. Sci. 2020;137:49412. doi: 10.1002/app.49412. DOI
Jouyandeh M, et al. Thermal-resistant polyurethane/nanoclay powder coatings: Degradation kinetics study. Coatings. 2020;10:871. doi: 10.3390/coatings10090871. DOI
Verma J, Nigam S, Sinha S, Bhattacharya A. Development of polyurethane based anti-scratch and anti-algal coating formulation with silica-titania core-shell nanoparticles. Vacuum. 2018;153:24–34. doi: 10.1016/j.vacuum.2018.03.034. PubMed DOI PMC
Verma J, Baghel V, Sikarwar BS, Bhattacharya A, Avasthi D. Advances in Industrial and Production Engineering. Springer; 2019. pp. 117–126.
Verma J, Khanna AS, Sahney R, Bhattacharya A. Super protective anti-bacterial coating development with silica–titania nano core–shells. Nanoscale Adv. 2020;2:4093–4105. doi: 10.1039/D0NA00387E. PubMed DOI PMC
Hadavand BS, Ataeefard M, Bafghi HF. Preparation of modified nano ZnO/polyester/TGIC powder coating nanocomposite and evaluation of its antibacterial activity. Compos. B Eng. 2015;82:190–195. doi: 10.1016/j.compositesb.2015.08.024. DOI
Zhai L, Lu D, Fan N, Wang X, Guan R. Facile fabrication and modification of polyacrylate/silica nanocomposite latexes prepared by silica sol and silane coupling agent. J. Coat. Technol. Res. 2013;10:799–810. doi: 10.1007/s11998-013-9513-3. DOI
ASTM, E. 408. Standard test methods for total normal emittance of surfaces using inspection-meter techniques. Annual Book of ASTM Standards, Vol. 15.
Robitaille P-M. On the validity of Kirchhoff's law of thermal emission. IEEE Trans. Plasma Sci. 2003;31:1263–1267. doi: 10.1109/TPS.2003.820958. DOI
Duffie JA, Beckman WA. Solar Engineering of Thermal Processes. Wiley; 2013.
Siegel R. Thermal Radiation Heat Transfer. CRC Press; 2001.
ASTM, E. Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials using Integrating Spheres (2012).
Ng TP, Koloor SS, Djuansjah JR, Kadir MA. Assessment of compressive failure process of cortical bone materials using damage-based model. J. Mech. Behav. Biomed. Mater. 2017;66:1–11. doi: 10.1016/j.jmbbm.2016.10.014. PubMed DOI
Abdi, B., Koloor, S., Abdullah, M., Amran, A. & Yahya, M. Y. Applied Mechanics and Materials 766–770 (Trans Tech Publ).
Izawa M, Applin D, Norman L, Cloutis E. Reflectance spectroscopy (350–2500 nm) of solid-state polycyclic aromatic hydrocarbons (PAHs) Icarus. 2014;237:159–181. doi: 10.1016/j.icarus.2014.04.033. DOI
Fang V, Kennedy JV, Futter J, Manning J. A Review of Near Infrared Reflectance Properties of Metal Oxide Nanostructures. GNS Science; 2013.