An Energy-Based Concept for Yielding of Multidirectional FRP Composite Structures Using a Mesoscale Lamina Damage Model
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
31936184
PubMed Central
PMC7022992
DOI
10.3390/polym12010157
PII: polym12010157
Knihovny.cz E-resources
- Keywords
- composite structures, composite yielding, continuum damage model, damage dissipation energy, finite element simulation, multidirectional FRP composite laminates,
- Publication type
- Journal Article MeSH
Composite structures are made of multidirectional (MD) fiber-reinforced polymer (FRP) composite laminates, which fail due to multiple damages in matrix, interface, and fiber constituents at different scales. The yield point of a unidirectional FRP composite is assumed as the lamina strength limit representing the damage initiation phenomena, while yielding of MD composites in structural applications are not quantified due to the complexity of the sequence of damage evolutions in different laminas dependent on their angle and specification. This paper proposes a new method to identify the yield point of MD composite structures based on the evolution of the damage dissipation energy (DDE). Such a characteristic evolution curve is computed using a validated finite element model with a mesoscale damage-based constitutive model that accounts for different matrix and fiber failure modes in angle lamina. The yield point of composite structures is identified to correspond to a 5% increase in the initial slope of the DDE evolution curve. The yield points of three antisymmetric MD FRP composite structures under flexural loading conditions are established based on Hashin unidirectional (UD) criteria and the energy-based criterion. It is shown that the new energy concept provides a significantly larger safe limit of yield for MD composite structures compared to UD criteria, in which the accumulation of energy dissipated due to all damage modes is less than 5% of the fracture energy required for the structural rupture.
See more in PubMed
Noël M. Probabilistic fatigue life modelling of frp composites for construction. Constr. Build. Mater. 2019;206:279–286. doi: 10.1016/j.conbuildmat.2019.02.082. DOI
R. Koloor S.S., Tamin M.N. Mode-ii interlaminar fracture and crack-jump phenomenon in cfrp composite laminate materials. Compos. Struct. 2018;204:594–606. doi: 10.1016/j.compstruct.2018.07.132. DOI
Karimzadeh A., R. Koloor S.S., Ayatollahi M.R., Bushroa A.R., Yahya M.Y. Assessment of nano-indentation method in mechanical characterization of heterogeneous nanocomposite materials using experimental and computational approaches. Sci. Rep. 2019;9:15763. doi: 10.1038/s41598-019-51904-4. PubMed DOI PMC
Degenhardt R., Castro S.G.P., Arbelo M.A., Zimmerman R., Khakimova R., Kling A. Future structural stability design for composite space and airframe structures. Thin Walled Struct. 2014;81:29–38. doi: 10.1016/j.tws.2014.02.020. DOI
Sharifi Teshnizi S.H., R. Koloor S.S., Sharifishourabi G., Bin Ayob A., Yahya M.Y. Mechanical behavior of gfrp laminated composite pipe subjected to uniform radial patch load. Adv. Mater. Res. 2012;488–489:542–546. doi: 10.4028/www.scientific.net/AMR.488-489.542. DOI
Bertorello C., Argüelles A., Mollón V., Bonhomme J., Viña I., Viña J. Use of a lhfb device for testing mode iii in a composite laminate. Polymers. 2019;11:1243. doi: 10.3390/polym11081243. PubMed DOI PMC
Wang Z., Liu J., Guo J., Sun X., Xu L. The study of thermal, mechanical and shape memory properties of chopped carbon fiber-reinforced tpi shape memory polymer composites. Polymers. 2017;9:594. doi: 10.3390/polym9110594. PubMed DOI PMC
Sriramula S., Chryssanthopoulos M.K. Quantification of uncertainty modelling in stochastic analysis of frp composites. Compos. Part A Appl. Sci. Manuf. 2009;40:1673–1684. doi: 10.1016/j.compositesa.2009.08.020. DOI
Zhou A., Qin R., Chow C.L., Lau D. Structural performance of frp confined seawater concrete columns under chloride environment. Compos. Struct. 2019;216:12–19. doi: 10.1016/j.compstruct.2019.02.058. DOI
R. Koloor S.S., Khosravani M.R., Hamzah R.I.R., Tamin M.N. Fe model-based construction and progressive damage processes of frp composite laminates with different manufacturing processes. Int. J. Mech. Sci. 2018;141:223–235. doi: 10.1016/j.ijmecsci.2018.03.028. DOI
R. Koloor S.S., Abdullah M.A., Tamin M.N., Ayatollahi M.R. Fatigue damage of cohesive interfaces in fiber-reinforced polymer composite laminates. Compos. Sci. Technol. 2019;183:107779. doi: 10.1016/j.compscitech.2019.107779. DOI
Sellitto A., Saputo S., Di Caprio F., Riccio A., Russo A., Acanfora V. Numerical–experimental correlation of impact-induced damages in cfrp laminates. Appl. Sci. 2019;9:2372. doi: 10.3390/app9112372. DOI
Filippatos A., Langkamp A., Gude M. Influence of gradual damage on the structural dynamic behaviour of composite rotors: Simulation assessment. Materials. 2018;11:2453. doi: 10.3390/ma11122453. PubMed DOI PMC
Hong B., Xian G., Li H. Comparative study of the durability behaviors of epoxy-and polyurethane-based cfrp plates subjected to the combined effects of sustained bending and water/seawater immersion. Polymers. 2017;9:603. doi: 10.3390/polym9110603. PubMed DOI PMC
Gere J.M., Goodno B.J. Mechanics of Materials. Cengage Learning; Boston, MA, USA: 2008.
Kassapoglou C. Design and Analysis of Composite Structures: With Applications to Aerospace Structures. Wiley; Hoboken, NJ, USA: 2013.
Sharifi Teshnizi S.H., R. Koloor S.S., Sharifishourabi G., Bin Ayob A., Yahya M.Y. Effect of ply thickness on displacements and stresses in laminated gfrp cylinder subjected to radial load. Adv. Mater. Res. 2012;488–489:367–371. doi: 10.4028/www.scientific.net/AMR.488-489.367. DOI
Abdi B., R. Koloor S.S., Abdullah M.R., Ayob A., Yahya M.Y.B. Effect of strain-rate on flexural behavior of composite sandwich panel. Appl. Mech. Mater. 2012;229–231:766–770. doi: 10.4028/www.scientific.net/AMM.229-231.766. DOI
Zou H., Yin W., Cai C., Wang B., Liu A., Yang Z., Li Y., He X. The out-of-plane compression behavior of cross-ply as4/peek thermoplastic composite laminates at high strain rates. Materials. 2018;11:2312. doi: 10.3390/ma11112312. PubMed DOI PMC
Rahimian-Koloor S.M., Moshrefzadeh-Sani H., Hashemianzadeh S.M., Shokrieh M.M. The effective stiffness of an embedded graphene in a polymeric matrix. Curr. Appl. Phys. 2018;18:559–566. doi: 10.1016/j.cap.2018.02.007. DOI
Hill R. A theory of the yielding and plastic flow of anisotropic metals. R. Soc. Lond. A Math. Phys. Eng. Sci. 1948;193:281–297.
Tsai S.W., Wu E.M. A general theory of strength for anisotropic materials. J. Compos. Mater. 1971;5:58–80. doi: 10.1177/002199837100500106. DOI
Orifici A., Herszberg I., Thomson R. Review of methodologies for composite material modelling incorporating failure. Compos. Struct. 2008;86:194–210. doi: 10.1016/j.compstruct.2008.03.007. DOI
Hashin Z. Failure criteria for unidirectional fiber composites. J. Appl. Mech. 1980;47:329–334. doi: 10.1115/1.3153664. DOI
Chang F.-K., Lessard L.B. Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings: Part i—Analysis. J. Compos. Mater. 1991;25:2–43. doi: 10.1177/002199839102500101. DOI
Puck A., Schürmann H. Failure analysis of frp laminates by means of physically based phenomenological models. Compos. Sci. Technol. 2002;62:1633–1662. doi: 10.1016/S0266-3538(01)00208-1. DOI
Cuntze R., Freund A. The predictive capability of failure mode concept-based strength criteria for multidirectional laminates. Compos. Sci. Technol. 2004;64:343–377. doi: 10.1016/S0266-3538(03)00218-5. DOI
Azizi R., Legarth B.N., Niordson C.F. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructure. J. Mech. Phys. Solids. 2013;61:991–1009. doi: 10.1016/j.jmps.2012.12.004. DOI
Daniel I.M. Yield and failure criteria for composite materials under static and dynamic loading. Prog. Aerosp. Sci. 2016;81:18–25. doi: 10.1016/j.paerosci.2015.11.003. DOI
Christensen R. Stress based yield/failure criteria for fiber composites. Int. J. Solids Struct. 1997;34:529–543. doi: 10.1016/S0020-7683(96)00038-8. DOI
Lissenden C.J. Experimental investigation of initial and subsequent yield surfaces for laminated metal matrix composites. Int. J. Plast. 2010;26:1606–1628. doi: 10.1016/j.ijplas.2010.01.013. DOI
Daniel I.M., Daniel S.M., Fenner J.S. A new yield and failure theory for composite materials under static and dynamic loading. Int. J. Solids Struct. 2018;148–149:79–93. doi: 10.1016/j.ijsolstr.2017.08.036. DOI
Hinton M., Kaddour A. The background to the second world-wide failure exercise. J. Compos. Mater. 2012;46:2283–2294. doi: 10.1177/0021998312449885. DOI
Kaddour A., Hinton M., Smith P., Li S. A comparison between the predictive capability of matrix cracking, damage and failure criteria for fibre reinforced composite laminates—Part a of the third world-wide failure exercise. J. Compos. Mater. 2013;47:2749–2779. doi: 10.1177/0021998313499476. DOI
Cherniaev A., Butcher C., Montesano J. Predicting the axial crush response of cfrp tubes using three damage-based constitutive models. Thin Walled Struct. 2018;129:349–364. doi: 10.1016/j.tws.2018.05.003. DOI
Hinton M.J., Kaddour A.S., Soden P.D. Failure Criteria in Fibre Reinforced Polymer Composites: The World-Wide Failure Exercise. Elsevier; Amsterdam, The Netherlands: 2004.
Zhuang F., Chen P., Arteiro A., Camanho P.P. Mesoscale modelling of damage in half-hole pin bearing composite laminate specimens. Compos. Struct. 2019;214:191–213. doi: 10.1016/j.compstruct.2019.01.062. DOI
Eskandari S., Andrade Pires F.M., Camanho P.P., Marques A.T. Intralaminar damage in polymer composites in the presence of finite fiber rotation: Part i—Constitutive model. Compos. Struct. 2016;151:114–126. doi: 10.1016/j.compstruct.2016.01.047. DOI
Maimí P., Camanho P.P., Mayugo J., Dávila C. A continuum damage model for composite laminates: Part i–constitutive model. Mech. Mater. 2007;39:897–908. doi: 10.1016/j.mechmat.2007.03.005. DOI
Fakoor M., Mohammad Navid Ghoreishi S. Experimental and numerical investigation of progressive damage in composite laminates based on continuum damage mechanics. Polym. Test. 2018;70:533–543. doi: 10.1016/j.polymertesting.2018.08.013. DOI
Su Z.C., Tay T.E., Ridha M., Chen B.Y. Progressive damage modeling of open-hole composite laminates under compression. Compos. Struct. 2015;122:507–517. doi: 10.1016/j.compstruct.2014.12.022. DOI
Yang Y., Liu X., Wang Y.-Q., Gao H., Li R., Bao Y. A progressive damage model for predicting damage evolution of laminated composites subjected to three-point bending. Compos. Sci. Technol. 2017;151:85–93. doi: 10.1016/j.compscitech.2017.08.009. DOI
R. Koloor S.S. Ph.D. Thesis. Universiti Teknologi Malaysia; Johor, Malaysia: 2016. Simulation Methodology for Fracture Processes of Composite Laminates Using Damage-Based Models.
R. Koloor S.S., Tamin M. Effects of lamina damages on flexural stiffness of cfrp composites; Proceedings of the 8th Asian-Australasian Conference on Composite Materials 2012, ACCM 2012; Kuala Lumpur, Malaysia. 6–8 November 2012; pp. 237–243.
R. Koloor S.S., Ayatollahi M.R., Tamin M.N. Elastic-damage deformation response of fiber-reinforced polymer composite laminates with lamina interfaces. J. Reinf. Plast. Compos. 2017;36:832–849. doi: 10.1177/0731684417693427. DOI
Daniel I., Schaefer J., Werner B. Yield criteria for matrix and composite materials under static and dynamic loading; Proceedings of the 24th International Congress of Theoretical and Applied Mechanics (ICTAM 2016); Montreal, QC, Canada. 22 August 2016.
Ahmed A., Wei L. Introducing cfrp as an alternative material for engine hood to achieve better pedestrian safety using finite element modeling. Thin Walled Struct. 2016;99:97–108. doi: 10.1016/j.tws.2015.11.001. DOI
Durão L., Tavares J., de Albuquerque V., Marques J., Andrade O. Drilling damage in composite material. Materials. 2014;7:3802–3819. doi: 10.3390/ma7053802. PubMed DOI PMC
Sun L., Wang J., Hu H., Ni A. A simplified computational strategy focused on resin damage to study matrix cracking of the cross-ply laminates under uniaxial tension load. Materials. 2019;12:1984. doi: 10.3390/ma12121984. PubMed DOI PMC
R. Koloor S.S., Rahimian-Koloor S.M., Karimzadeh A., Hamdi M., Petrů M., Tamin M.N. Nano-level damage characterization of graphene/polymer cohesive interface under tensile separation. Polymers. 2019;11:1435. doi: 10.3390/polym11091435. PubMed DOI PMC
Capriotti M., Kim H.E., Scalea F.L.D., Kim H. Non-destructive inspection of impact damage in composite aircraft panels by ultrasonic guided waves and statistical processing. Materials. 2017;10:616. doi: 10.3390/ma10060616. PubMed DOI PMC
R. Koloor S.S., Abdul-Latif A., Tamin M.N. Mechanics of composite delamination under flexural loading. Key Eng. Mater. 2011;462:726–731. doi: 10.4028/www.scientific.net/KEM.462-463.726. DOI
Kaw A.K. Mechanics of Composite Materials. CRC Press; Boca Raton, FL, USA: 2005.
Murakami S. Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture. Volume 185 Springer Science & Business Media; Berlin/Heidelberg, Germany: 2012.
Matzenmiller A., Lubliner J., Taylor R. A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 1995;20:125–152. doi: 10.1016/0167-6636(94)00053-0. DOI
Chaboche J. The concept of effective stress applied elasticity and to viscoplasticity in presence of anisotropic damage. Mech. Behav. Anisotropic Solids. 1979:737–760.
ABAQUS-6.9EF. Theory Manual. [(accessed on 3 January 2020)];2010 Available online: http://130.149.89.49:2080/v6.9ef/index.html.
ASTM . Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International; Conshohocken, PA, USA: 2011. D790-10; pp. 150–158.
ASTM D4762–18. Standard Guide for Testing Polymer Matrix Composite Materials. [(accessed on 3 January 2020)];2018 Available online: https://www.astm.org/Standards/D4762.htm.
Ghelli D. Some Issues Concerning the Dynamic Response and Damage of Composite Laminates Subjected to Low Velocity Impact. University of Bologna; Bologna, Italy: 2009.
Nakatani H., Kosaka T., Osaka K., Sawada Y. Damage characterization of titanium/gfrp hybrid laminates subjected to low-velocity impact. Compos. Part A Appl. Sci. Manuf. 2011;42:772–781. doi: 10.1016/j.compositesa.2011.03.005. DOI
Shi Y., Swait T., Soutis C. Modelling damage evolution in composite laminates subjected to low velocity impact. Compos. Struct. 2012;94:2902–2913. doi: 10.1016/j.compstruct.2012.03.039. DOI
Strain-Field Modifications in the Surroundings of Impact Damage of Carbon/Epoxy Laminate
Finite Element Analysis of the Ballistic Impact on Auxetic Sandwich Composite Human Body Armor
Mechanical Behaviour of Pin-Reinforced Foam Core Sandwich Panels Subjected to Low Impact Loading
Heat insulation effect in solar radiation of polyurethane powder coating nanocomposite
Hybrid and Synthetic FRP Composites under Different Strain Rates: A Review
Investigation on the Curvature Correction Factor of Extension Spring
Fabrication of High-Quality Polymer Composite Frame by a New Method of Fiber Winding Process