• This record comes from PubMed

An Energy-Based Concept for Yielding of Multidirectional FRP Composite Structures Using a Mesoscale Lamina Damage Model

. 2020 Jan 07 ; 12 (1) : . [epub] 20200107

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Composite structures are made of multidirectional (MD) fiber-reinforced polymer (FRP) composite laminates, which fail due to multiple damages in matrix, interface, and fiber constituents at different scales. The yield point of a unidirectional FRP composite is assumed as the lamina strength limit representing the damage initiation phenomena, while yielding of MD composites in structural applications are not quantified due to the complexity of the sequence of damage evolutions in different laminas dependent on their angle and specification. This paper proposes a new method to identify the yield point of MD composite structures based on the evolution of the damage dissipation energy (DDE). Such a characteristic evolution curve is computed using a validated finite element model with a mesoscale damage-based constitutive model that accounts for different matrix and fiber failure modes in angle lamina. The yield point of composite structures is identified to correspond to a 5% increase in the initial slope of the DDE evolution curve. The yield points of three antisymmetric MD FRP composite structures under flexural loading conditions are established based on Hashin unidirectional (UD) criteria and the energy-based criterion. It is shown that the new energy concept provides a significantly larger safe limit of yield for MD composite structures compared to UD criteria, in which the accumulation of energy dissipated due to all damage modes is less than 5% of the fracture energy required for the structural rupture.

See more in PubMed

Noël M. Probabilistic fatigue life modelling of frp composites for construction. Constr. Build. Mater. 2019;206:279–286. doi: 10.1016/j.conbuildmat.2019.02.082. DOI

R. Koloor S.S., Tamin M.N. Mode-ii interlaminar fracture and crack-jump phenomenon in cfrp composite laminate materials. Compos. Struct. 2018;204:594–606. doi: 10.1016/j.compstruct.2018.07.132. DOI

Karimzadeh A., R. Koloor S.S., Ayatollahi M.R., Bushroa A.R., Yahya M.Y. Assessment of nano-indentation method in mechanical characterization of heterogeneous nanocomposite materials using experimental and computational approaches. Sci. Rep. 2019;9:15763. doi: 10.1038/s41598-019-51904-4. PubMed DOI PMC

Degenhardt R., Castro S.G.P., Arbelo M.A., Zimmerman R., Khakimova R., Kling A. Future structural stability design for composite space and airframe structures. Thin Walled Struct. 2014;81:29–38. doi: 10.1016/j.tws.2014.02.020. DOI

Sharifi Teshnizi S.H., R. Koloor S.S., Sharifishourabi G., Bin Ayob A., Yahya M.Y. Mechanical behavior of gfrp laminated composite pipe subjected to uniform radial patch load. Adv. Mater. Res. 2012;488–489:542–546. doi: 10.4028/www.scientific.net/AMR.488-489.542. DOI

Bertorello C., Argüelles A., Mollón V., Bonhomme J., Viña I., Viña J. Use of a lhfb device for testing mode iii in a composite laminate. Polymers. 2019;11:1243. doi: 10.3390/polym11081243. PubMed DOI PMC

Wang Z., Liu J., Guo J., Sun X., Xu L. The study of thermal, mechanical and shape memory properties of chopped carbon fiber-reinforced tpi shape memory polymer composites. Polymers. 2017;9:594. doi: 10.3390/polym9110594. PubMed DOI PMC

Sriramula S., Chryssanthopoulos M.K. Quantification of uncertainty modelling in stochastic analysis of frp composites. Compos. Part A Appl. Sci. Manuf. 2009;40:1673–1684. doi: 10.1016/j.compositesa.2009.08.020. DOI

Zhou A., Qin R., Chow C.L., Lau D. Structural performance of frp confined seawater concrete columns under chloride environment. Compos. Struct. 2019;216:12–19. doi: 10.1016/j.compstruct.2019.02.058. DOI

R. Koloor S.S., Khosravani M.R., Hamzah R.I.R., Tamin M.N. Fe model-based construction and progressive damage processes of frp composite laminates with different manufacturing processes. Int. J. Mech. Sci. 2018;141:223–235. doi: 10.1016/j.ijmecsci.2018.03.028. DOI

R. Koloor S.S., Abdullah M.A., Tamin M.N., Ayatollahi M.R. Fatigue damage of cohesive interfaces in fiber-reinforced polymer composite laminates. Compos. Sci. Technol. 2019;183:107779. doi: 10.1016/j.compscitech.2019.107779. DOI

Sellitto A., Saputo S., Di Caprio F., Riccio A., Russo A., Acanfora V. Numerical–experimental correlation of impact-induced damages in cfrp laminates. Appl. Sci. 2019;9:2372. doi: 10.3390/app9112372. DOI

Filippatos A., Langkamp A., Gude M. Influence of gradual damage on the structural dynamic behaviour of composite rotors: Simulation assessment. Materials. 2018;11:2453. doi: 10.3390/ma11122453. PubMed DOI PMC

Hong B., Xian G., Li H. Comparative study of the durability behaviors of epoxy-and polyurethane-based cfrp plates subjected to the combined effects of sustained bending and water/seawater immersion. Polymers. 2017;9:603. doi: 10.3390/polym9110603. PubMed DOI PMC

Gere J.M., Goodno B.J. Mechanics of Materials. Cengage Learning; Boston, MA, USA: 2008.

Kassapoglou C. Design and Analysis of Composite Structures: With Applications to Aerospace Structures. Wiley; Hoboken, NJ, USA: 2013.

Sharifi Teshnizi S.H., R. Koloor S.S., Sharifishourabi G., Bin Ayob A., Yahya M.Y. Effect of ply thickness on displacements and stresses in laminated gfrp cylinder subjected to radial load. Adv. Mater. Res. 2012;488–489:367–371. doi: 10.4028/www.scientific.net/AMR.488-489.367. DOI

Abdi B., R. Koloor S.S., Abdullah M.R., Ayob A., Yahya M.Y.B. Effect of strain-rate on flexural behavior of composite sandwich panel. Appl. Mech. Mater. 2012;229–231:766–770. doi: 10.4028/www.scientific.net/AMM.229-231.766. DOI

Zou H., Yin W., Cai C., Wang B., Liu A., Yang Z., Li Y., He X. The out-of-plane compression behavior of cross-ply as4/peek thermoplastic composite laminates at high strain rates. Materials. 2018;11:2312. doi: 10.3390/ma11112312. PubMed DOI PMC

Rahimian-Koloor S.M., Moshrefzadeh-Sani H., Hashemianzadeh S.M., Shokrieh M.M. The effective stiffness of an embedded graphene in a polymeric matrix. Curr. Appl. Phys. 2018;18:559–566. doi: 10.1016/j.cap.2018.02.007. DOI

Hill R. A theory of the yielding and plastic flow of anisotropic metals. R. Soc. Lond. A Math. Phys. Eng. Sci. 1948;193:281–297.

Tsai S.W., Wu E.M. A general theory of strength for anisotropic materials. J. Compos. Mater. 1971;5:58–80. doi: 10.1177/002199837100500106. DOI

Orifici A., Herszberg I., Thomson R. Review of methodologies for composite material modelling incorporating failure. Compos. Struct. 2008;86:194–210. doi: 10.1016/j.compstruct.2008.03.007. DOI

Hashin Z. Failure criteria for unidirectional fiber composites. J. Appl. Mech. 1980;47:329–334. doi: 10.1115/1.3153664. DOI

Chang F.-K., Lessard L.B. Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings: Part i—Analysis. J. Compos. Mater. 1991;25:2–43. doi: 10.1177/002199839102500101. DOI

Puck A., Schürmann H. Failure analysis of frp laminates by means of physically based phenomenological models. Compos. Sci. Technol. 2002;62:1633–1662. doi: 10.1016/S0266-3538(01)00208-1. DOI

Cuntze R., Freund A. The predictive capability of failure mode concept-based strength criteria for multidirectional laminates. Compos. Sci. Technol. 2004;64:343–377. doi: 10.1016/S0266-3538(03)00218-5. DOI

Azizi R., Legarth B.N., Niordson C.F. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructure. J. Mech. Phys. Solids. 2013;61:991–1009. doi: 10.1016/j.jmps.2012.12.004. DOI

Daniel I.M. Yield and failure criteria for composite materials under static and dynamic loading. Prog. Aerosp. Sci. 2016;81:18–25. doi: 10.1016/j.paerosci.2015.11.003. DOI

Christensen R. Stress based yield/failure criteria for fiber composites. Int. J. Solids Struct. 1997;34:529–543. doi: 10.1016/S0020-7683(96)00038-8. DOI

Lissenden C.J. Experimental investigation of initial and subsequent yield surfaces for laminated metal matrix composites. Int. J. Plast. 2010;26:1606–1628. doi: 10.1016/j.ijplas.2010.01.013. DOI

Daniel I.M., Daniel S.M., Fenner J.S. A new yield and failure theory for composite materials under static and dynamic loading. Int. J. Solids Struct. 2018;148–149:79–93. doi: 10.1016/j.ijsolstr.2017.08.036. DOI

Hinton M., Kaddour A. The background to the second world-wide failure exercise. J. Compos. Mater. 2012;46:2283–2294. doi: 10.1177/0021998312449885. DOI

Kaddour A., Hinton M., Smith P., Li S. A comparison between the predictive capability of matrix cracking, damage and failure criteria for fibre reinforced composite laminates—Part a of the third world-wide failure exercise. J. Compos. Mater. 2013;47:2749–2779. doi: 10.1177/0021998313499476. DOI

Cherniaev A., Butcher C., Montesano J. Predicting the axial crush response of cfrp tubes using three damage-based constitutive models. Thin Walled Struct. 2018;129:349–364. doi: 10.1016/j.tws.2018.05.003. DOI

Hinton M.J., Kaddour A.S., Soden P.D. Failure Criteria in Fibre Reinforced Polymer Composites: The World-Wide Failure Exercise. Elsevier; Amsterdam, The Netherlands: 2004.

Zhuang F., Chen P., Arteiro A., Camanho P.P. Mesoscale modelling of damage in half-hole pin bearing composite laminate specimens. Compos. Struct. 2019;214:191–213. doi: 10.1016/j.compstruct.2019.01.062. DOI

Eskandari S., Andrade Pires F.M., Camanho P.P., Marques A.T. Intralaminar damage in polymer composites in the presence of finite fiber rotation: Part i—Constitutive model. Compos. Struct. 2016;151:114–126. doi: 10.1016/j.compstruct.2016.01.047. DOI

Maimí P., Camanho P.P., Mayugo J., Dávila C. A continuum damage model for composite laminates: Part i–constitutive model. Mech. Mater. 2007;39:897–908. doi: 10.1016/j.mechmat.2007.03.005. DOI

Fakoor M., Mohammad Navid Ghoreishi S. Experimental and numerical investigation of progressive damage in composite laminates based on continuum damage mechanics. Polym. Test. 2018;70:533–543. doi: 10.1016/j.polymertesting.2018.08.013. DOI

Su Z.C., Tay T.E., Ridha M., Chen B.Y. Progressive damage modeling of open-hole composite laminates under compression. Compos. Struct. 2015;122:507–517. doi: 10.1016/j.compstruct.2014.12.022. DOI

Yang Y., Liu X., Wang Y.-Q., Gao H., Li R., Bao Y. A progressive damage model for predicting damage evolution of laminated composites subjected to three-point bending. Compos. Sci. Technol. 2017;151:85–93. doi: 10.1016/j.compscitech.2017.08.009. DOI

R. Koloor S.S. Ph.D. Thesis. Universiti Teknologi Malaysia; Johor, Malaysia: 2016. Simulation Methodology for Fracture Processes of Composite Laminates Using Damage-Based Models.

R. Koloor S.S., Tamin M. Effects of lamina damages on flexural stiffness of cfrp composites; Proceedings of the 8th Asian-Australasian Conference on Composite Materials 2012, ACCM 2012; Kuala Lumpur, Malaysia. 6–8 November 2012; pp. 237–243.

R. Koloor S.S., Ayatollahi M.R., Tamin M.N. Elastic-damage deformation response of fiber-reinforced polymer composite laminates with lamina interfaces. J. Reinf. Plast. Compos. 2017;36:832–849. doi: 10.1177/0731684417693427. DOI

Daniel I., Schaefer J., Werner B. Yield criteria for matrix and composite materials under static and dynamic loading; Proceedings of the 24th International Congress of Theoretical and Applied Mechanics (ICTAM 2016); Montreal, QC, Canada. 22 August 2016.

Ahmed A., Wei L. Introducing cfrp as an alternative material for engine hood to achieve better pedestrian safety using finite element modeling. Thin Walled Struct. 2016;99:97–108. doi: 10.1016/j.tws.2015.11.001. DOI

Durão L., Tavares J., de Albuquerque V., Marques J., Andrade O. Drilling damage in composite material. Materials. 2014;7:3802–3819. doi: 10.3390/ma7053802. PubMed DOI PMC

Sun L., Wang J., Hu H., Ni A. A simplified computational strategy focused on resin damage to study matrix cracking of the cross-ply laminates under uniaxial tension load. Materials. 2019;12:1984. doi: 10.3390/ma12121984. PubMed DOI PMC

R. Koloor S.S., Rahimian-Koloor S.M., Karimzadeh A., Hamdi M., Petrů M., Tamin M.N. Nano-level damage characterization of graphene/polymer cohesive interface under tensile separation. Polymers. 2019;11:1435. doi: 10.3390/polym11091435. PubMed DOI PMC

Capriotti M., Kim H.E., Scalea F.L.D., Kim H. Non-destructive inspection of impact damage in composite aircraft panels by ultrasonic guided waves and statistical processing. Materials. 2017;10:616. doi: 10.3390/ma10060616. PubMed DOI PMC

R. Koloor S.S., Abdul-Latif A., Tamin M.N. Mechanics of composite delamination under flexural loading. Key Eng. Mater. 2011;462:726–731. doi: 10.4028/www.scientific.net/KEM.462-463.726. DOI

Kaw A.K. Mechanics of Composite Materials. CRC Press; Boca Raton, FL, USA: 2005.

Murakami S. Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture. Volume 185 Springer Science & Business Media; Berlin/Heidelberg, Germany: 2012.

Matzenmiller A., Lubliner J., Taylor R. A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 1995;20:125–152. doi: 10.1016/0167-6636(94)00053-0. DOI

Chaboche J. The concept of effective stress applied elasticity and to viscoplasticity in presence of anisotropic damage. Mech. Behav. Anisotropic Solids. 1979:737–760.

ABAQUS-6.9EF. Theory Manual. [(accessed on 3 January 2020)];2010 Available online: http://130.149.89.49:2080/v6.9ef/index.html.

ASTM . Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International; Conshohocken, PA, USA: 2011. D790-10; pp. 150–158.

ASTM D4762–18. Standard Guide for Testing Polymer Matrix Composite Materials. [(accessed on 3 January 2020)];2018 Available online: https://www.astm.org/Standards/D4762.htm.

Ghelli D. Some Issues Concerning the Dynamic Response and Damage of Composite Laminates Subjected to Low Velocity Impact. University of Bologna; Bologna, Italy: 2009.

Nakatani H., Kosaka T., Osaka K., Sawada Y. Damage characterization of titanium/gfrp hybrid laminates subjected to low-velocity impact. Compos. Part A Appl. Sci. Manuf. 2011;42:772–781. doi: 10.1016/j.compositesa.2011.03.005. DOI

Shi Y., Swait T., Soutis C. Modelling damage evolution in composite laminates subjected to low velocity impact. Compos. Struct. 2012;94:2902–2913. doi: 10.1016/j.compstruct.2012.03.039. DOI

Newest 20 citations...

See more in
Medvik | PubMed

Strain-Field Modifications in the Surroundings of Impact Damage of Carbon/Epoxy Laminate

. 2022 Aug 09 ; 14 (16) : . [epub] 20220809

Linearization of Composite Material Damage Model Results and Its Impact on the Subsequent Stress-Strain Analysis

. 2022 Mar 11 ; 14 (6) : . [epub] 20220311

Finite Element Analysis of the Ballistic Impact on Auxetic Sandwich Composite Human Body Armor

. 2022 Mar 11 ; 15 (6) : . [epub] 20220311

Mechanical Behaviour of Pin-Reinforced Foam Core Sandwich Panels Subjected to Low Impact Loading

. 2021 Oct 21 ; 13 (21) : . [epub] 20211021

Heat insulation effect in solar radiation of polyurethane powder coating nanocomposite

. 2021 Oct 19 ; 11 (1) : 20665. [epub] 20211019

Hybrid and Synthetic FRP Composites under Different Strain Rates: A Review

. 2021 Oct 02 ; 13 (19) : . [epub] 20211002

Displacement Rate Effects on the Mode II Shear Delamination Behavior of Carbon Fiber/Epoxy Composites

. 2021 Jun 06 ; 13 (11) : . [epub] 20210606

Linear-Nonlinear Stiffness Responses of Carbon Fiber-Reinforced Polymer Composite Materials and Structures: A Numerical Study

. 2021 Jan 22 ; 13 (3) : . [epub] 20210122

Representative Cell Analysis for Damage-Based Failure Model of Polymer Hexagonal Honeycomb Structure under the Out-of-Plane Loadings

. 2020 Dec 25 ; 13 (1) : . [epub] 20201225

Investigation on the Curvature Correction Factor of Extension Spring

. 2020 Sep 21 ; 13 (18) : . [epub] 20200921

Fabrication of High-Quality Polymer Composite Frame by a New Method of Fiber Winding Process

. 2020 May 02 ; 12 (5) : . [epub] 20200502

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...