Finite Element Analysis of the Ballistic Impact on Auxetic Sandwich Composite Human Body Armor
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35329516
PubMed Central
PMC8950186
DOI
10.3390/ma15062064
PII: ma15062064
Knihovny.cz E-zdroje
- Klíčová slova
- Johnson–Cook model, auxetic sandwich composite, finite element analysis, monolithic armor plates, silicon carbide, ultra-high-molecular-weight polyethylene,
- Publikační typ
- časopisecké články MeSH
In this study, the ballistic impact behavior of auxetic sandwich composite human body armor was analyzed using finite element analysis. The auxetic core of the armor was composed of discrete re-entrant unit cells. The sandwich armor structure consisted of a front panel of aluminum alloy (Al 7075-T6), UHMWPE (sandwich core), and a back facet of silicon carbide (SiC) bonded together with epoxy resin. Numerical simulations were run on Explicit Dynamics/Autodyne 3-D code. Various projectile velocities with the same boundary conditions were used to predict the auxetic armor response. These results were compared with those of conventional monolithic body armor. The results showed improved indentation resistance with the auxetic armor. Deformation in auxetic armor was observed greater for each of the cases when compared to the monolithic armor, due to higher energy absorption. The elastic energy dissipation results in the lower indentation in an auxetic armor. The armor can be used safely up to 400 m/s; being used at higher velocities significantly reduced the threat level. Conversely, the conventional monolithic modal does not allow the projectile to pass through at a velocity below 300 m/s; however, the back face becomes severely damaged at 200 m/s. At a velocity of 400 m/s, the front facet of auxetic armor was destroyed; however, the back facet was completely safe, while the monolithic panel did not withstand this velocity and was completely damaged. The results are encouraging in terms of resistance offered by the newly adopted auxetic armor compared to conventional monolithic armor.
Department of Mechanical Engineering International Islamic University Islamabad 44000 Pakistan
Technical University of Liberec Studentska 2 461 17 Liberec Czech Republic
Zobrazit více v PubMed
Ren X., Das R., Tran P., Ngo T.D., Xie Y.M. Auxetic metamaterials and structures: A review. Smart Mater. Struct. 2018;27:023001. doi: 10.1088/1361-665X/aaa61c. DOI
Farokhi Nejad A., Alipour R., Shokri Rad M., Yazid Yahya M., Rahimian Koloor S.S., Petrů M. Using finite element approach for crashworthiness assessment of a polymeric auxetic structure subjected to the axial loading. Polymers. 2020;12:1312. doi: 10.3390/polym12061312. PubMed DOI PMC
Funari M.F., Spadea S., Lonetti P., Lourenço P.B. On the elastic and mixed-mode fracture properties of PVC foam. Theor. Appl. Fract. Mech. 2021;112:102924. doi: 10.1016/j.tafmec.2021.102924. DOI
Evans K.E., Alderson A. Auxetic materials: Functional materials and structures from lateral thinking! Adv. Mater. 2000;12:617–628. doi: 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3. DOI
Zochowski P., Bajkowski M., Grygoruk R., Magier M., Burian W., Pyka D., Bocian M., Jamroziak K. Ballistic impact resistance of bulletproof vest inserts containing printed titanium structures. Metals. 2021;11:225. doi: 10.3390/met11020225. DOI
Greaves G., Greer A., Lakes R., Rouxel T. Poisson′s ratio and modern materials (vol 10, pg 823, 2011) Nat. Mater. 2019;18:406. doi: 10.1038/s41563-019-0319-2. PubMed DOI
Assidi M., Ganghoffer J.-F. Composites with auxetic inclusions showing both an auxetic behavior and enhancement of their mechanical properties. Compos. Struct. 2012;94:2373–2382. doi: 10.1016/j.compstruct.2012.02.026. DOI
Rahimian Koloor S.S., Karimzadeh A., Yidris N., Petrů M., Ayatollahi M.R., Tamin M.N. An energy-based concept for yielding of multidirectional FRP composite structures using a mesoscale lamina damage model. Polymers. 2020;12:157. doi: 10.3390/polym12010157. PubMed DOI PMC
Ha N.S., Lu G. A review of recent research on bio-inspired structures and materials for energy absorption applications. Compos. Part B Eng. 2020;181:107496. doi: 10.1016/j.compositesb.2019.107496. DOI
Prawoto Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio. Comput. Mater. Sci. 2012;58:140–153. doi: 10.1016/j.commatsci.2012.02.012. DOI
Alderson A., Alderson K. Expanding materials and applications: Exploiting auxetic textiles. Tech. Text. Int. 2005;777:29–34.
Allen T., Martinello N., Zampieri D., Hewage T., Senior T., Foster L., Alderson A. Auxetic Foams for Sport Safety Applications. Procedia Eng. 2015;112:104–109. doi: 10.1016/j.proeng.2015.07.183. DOI
Vo N.H., Pham T.M., Hao H., Bi K., Chen W., San Ha N. Blast resistant enhancement of meta-panels using multiple types of resonators. Int. J. Mech. Sci. 2022;215:106965. doi: 10.1016/j.ijmecsci.2021.106965. DOI
Cantwell W.J., Morton J. The impact resistance of composite materials—A review. Composites. 1991;22:347–362. doi: 10.1016/0010-4361(91)90549-V. DOI
Oliveira M.J., Gomes A.V., Pimenta A.R., da Silva Figueiredo A.B.-H. Alumina and low density polyethylene composite for ballistics applications. J. Mater. Res. Technol. 2021;14:1791–1799. doi: 10.1016/j.jmrt.2021.07.069. DOI
Nyanor P., Hamada A.S., Hassan M.A.-N. Ballistic Impact Simulation of Proposed Bullet Proof Vest Made of TWIP Steel, Water and Polymer Sandwich Composite Using FE-SPH Coupled Technique. Key Eng. Mater. 2018;786:302–313. doi: 10.4028/www.scientific.net/KEM.786.302. DOI
Pacek D., Rutkowski J. The composite structure for human body impact protection. Compos. Struct. 2021;265:113763. doi: 10.1016/j.compstruct.2021.113763. DOI
Soydan A.M., Tunaboylu B., Elsabagh A.G., Sarı A.K., Akdeniz R. Simulation and experimental tests of ballistic impact on composite laminate armor. Adv. Mater. Sci. Eng. 2018;2018:4696143. doi: 10.1155/2018/4696143. DOI
Kant S., Verma S.L. A review on analysis and design of bullet resistant jacket-ballistic analysis. Int. Adv. Res. J. Sci. Eng. Technol. 2017;4:71–80.
Abdi B., Koloor S., Abdullah M., Amran A., Yahya M.Y. Applied Mechanics and Materials. Trans Tech Publications Ltd.; Frienbach, Switzerland: 2012. Effect of strain-rate on flexural behavior of composite sandwich panel; pp. 766–770.
San Ha N., Lu G., Xiang X. Energy absorption of a bio-inspired honeycomb sandwich panel. J. Mater. Sci. 2019;54:6286–6300.
Ingrole A., Hao A., Liang R. Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater. Des. 2017;117:72–83. doi: 10.1016/j.matdes.2016.12.067. DOI
Vo N.H., Pham T.M., Bi K., Chen W., Hao H. Stress Wave Mitigation Properties of Dual-meta Panels against Blast Loads. Int. J. Impact Eng. 2021;154:103877. doi: 10.1016/j.ijimpeng.2021.103877. DOI
Imbalzano G., Tran P., Ngo T.D., Lee P.V.S. A numerical study of auxetic composite panels under blast loadings. Compos. Struct. 2016;135:339–352. doi: 10.1016/j.compstruct.2015.09.038. DOI
Imbalzano G., Tran P., Ngo T.D., Lee P.V. Three-dimensional modelling of auxetic sandwich panels for localised impact resistance. J. Sandw. Struct. Mater. 2017;19:291–316. doi: 10.1177/1099636215618539. DOI
Imbalzano G., Tran P., Lee P.V., Gunasegaram D., Ngo T.D. Applied Mechanics and Materials. Trans Tech Publications Ltd.; Frienbach, Switzerland: 2016. Influences of material and geometry in the performance of auxetic composite structure under blast loading; pp. 476–481.
Imbalzano G., Linforth S., Ngo T.D., Lee P.V.S., Tran P. Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs. Compos. Struct. 2018;183:242–261. doi: 10.1016/j.compstruct.2017.03.018. DOI
Burlayenko V.N., Sadowski T. Simulations of post-impact skin/core debond growth in sandwich plates under impulsive loading. J. Appl. Nonlinear Dyn. 2014;3:369–379. doi: 10.5890/JAND.2014.12.008. DOI
Linforth S.J. Ph.D. Thesis. The University of Melbourne; Melbourne, Australia: 2020. Auxetic Armour System for Protection against Soil Blast Loading.
Novak N., Starčevič L., Vesenjak M., Ren Z. Blast and Ballistic Loading Study of Auxetic Composite Sandwich Panels with LS-DYNA. 2019. [(accessed on 29 December 2021)]. Available online: https://www.semanticscholar.org/paper/Blast-and-ballistic-loading-study-of-auxetic-panels-Novak-Star%C4%8Devi%C4%8D/cb928c507ac0fbac28a180e6caab555201cced39.
Yang S., Qi C., Wang D., Gao R., Hu H., Shu J. A Comparative Study of Ballistic Resistance of Sandwich Panels with Aluminum Foam and Auxetic Honeycomb Cores. Adv. Mech. Eng. 2015;5:589216. doi: 10.1155/2013/589216. DOI
Zhang D.-N., Shangguan Q.-Q., Xie C.-J., Liu F. A modified Johnson–Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy. J. Alloys Compd. 2015;619:186–194. doi: 10.1016/j.jallcom.2014.09.002. DOI
Figueiredo A.B.-H.d.S., Lima É.P., Gomes A.V., Melo G.B.M.d., Monteiro S.N., Biasi R.S.d. Response to ballistic impact of alumina-UHMWPE composites. Mater. Res. 2018;21:2–4. doi: 10.1590/1980-5373-mr-2017-0959. DOI
Rahbek D.B., Simons J.W., Johnsen B.B., Kobayashi T., Shockey D.A. Effect of composite covering on ballistic fracture damage development in ceramic plates. Int. J. Impact Eng. 2017;99:58–68. doi: 10.1016/j.ijimpeng.2016.09.010. DOI
Yamini S., Young R.J. The mechanical properties of epoxy resins. J. Mater. Sci. 1980;15:1823–1831. doi: 10.1007/BF00550603. DOI
Wang X., Shi J. Validation of Johnson-Cook plasticity and damage model using impact experiment. Int. J. Impact Eng. 2013;60:67–75. doi: 10.1016/j.ijimpeng.2013.04.010. DOI
Koloor S., Tamin M. Effects of lamina damages on flexural stiffness of CFRP composites; Proceedings of the 8th Asian-Australasian Conference on Composite Materials; Kuala Lumpur, Malaysia. 6–8 November 2012.
Zhang Y., Outeiro J., Mabrouki T. On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4 V using three types of numerical models of orthogonal cutting. Procedia Cirp. 2015;31:112–117. doi: 10.1016/j.procir.2015.03.052. DOI
Johnson G.R., Cook W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985;21:31–48. doi: 10.1016/0013-7944(85)90052-9. DOI
Johnson G.R. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures; Proceedings of the 7th International Symposium of Ballistics; The Hague, The Netherlands. 19–21 April 1983; pp. 541–547.
Brar N., Joshi V., Harris B. Aip Conference Proceedings. American Institute of Physics; University Park, MD, USA: 2009. Constitutive model constants for Al7075-t651 and Al7075-t6; pp. 945–948.