Using Finite Element Approach for Crashworthiness Assessment of a Polymeric Auxetic Structure Subjected to the Axial Loading
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
32526842
PubMed Central
PMC7362047
DOI
10.3390/polym12061312
PII: polym12061312
Knihovny.cz E-resources
- Keywords
- axial loading, cellular structures, crashworthiness, finite element method, negative Poisson’s ratio,
- Publication type
- Journal Article MeSH
Polyurethane foams are one of the most common auxetic structures regarding energy absorption enhancement. This present study evaluates the result reliability of two different numerical approaches, the H-method and the P-method, to obtain the best convergence solution. A polymeric re-entrant cell is created with a beam element and the results of the two different methods are compared. Additionally, the numerical results compare well with the analytical solution. The results show that there is a good agreement between converged FE models and the analytical solution. Regarding the computational cost, the P-method is more efficient for simulating the re-entrant structure subjected to axial loading. During the second part of this study, the re-entrant cell is used for generating a polymeric auxetic cellular tube. The mesh convergence study is performed on the cellular structures using the H- and P- methods. The cellular tube is subjected to tensional and compressive loading, the module of elasticity and Poisson's ration to calculate different aspect ratios. A nonlinear analysis is performed to compare the dynamic response of a cellular tube versus a solid tube. The crashworthiness indicators are addressed and the results are compared with equivalent solid tubes. The results show that the auxetic cellular tubes have better responses against compressive loading. The primary outcome of this research is to assess a reliable FE approach for re-entrant structures under axial loading.
Department of Mechanical and Aerospace Engineering Politecnico di Torino 10129 Torino Italy
Department of Mechanical Engineering Lorestan University Khorramabad Lorestan 68151 Iran
Department of Mechanical Engineering Mahshahr Branch Islamic Azad University Mahshahr 63519 Iran
See more in PubMed
Prawoto Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio. Comput. Mater. Sci. 2012;58:140–153. doi: 10.1016/j.commatsci.2012.02.012. DOI
Mohsenizadeh S., Alipour R., Shokri Rad M., Nejad A.F., Ahmad Z. Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading. Mater. Des. 2015;88:258–268. doi: 10.1016/j.matdes.2015.08.152. DOI
Zhang X., Yang D. Mechanical properties of auxetic cellular material consisting of re-entrant hexagonal honeycombs. Materials. 2016;9:900. doi: 10.3390/ma9110900. PubMed DOI PMC
Yang W., Li Z.-M., Shi W., Xie B., Yang M.-B. Review on auxetic materials. J. Mater. Sci. 2004;39:3269–3279. doi: 10.1023/B:JMSC.0000026928.93231.e0. DOI
Rad M.S., Hatami H., Alipouri R., Nejad A.F., Omidinasab F. Determination of energy absorption in different cellular auxetic structures. Mech. Ind. 2019;20:302.
Chan N., Evans K.E. Fabrication methods for auxetic foams. J. Mater. Sci. 1997;32:5945–5953. doi: 10.1023/A:1018606926094. DOI
Wojciechowski K.W. Non-chiral, molecular model of negative Poisson ratio in two dimensions. J. Phys. A. 2003;36:11765. doi: 10.1088/0305-4470/36/47/005. DOI
Tretiakov K., Krzysztof V., Wojciechowski W. Poisson’s ratio of simple planar ‘isotropic’ solids in two dimensions. Physica Status Solidi. 2007;244:1038–1046. doi: 10.1002/pssb.200572721. DOI
Rad M.S., Prawoto Y., Ahmad Z. Analytical solution and finite element approach to the 3D re-entrant structures of auxetic materials. Mech. Mater. 2014;74:76–87.
Imbalzano G., Tran P., Ngo T., Lee P.V.S. Three-dimensional modelling of auxetic sandwich panels for localised impact resistance. J. Sandw. Struct. Mater. 2017;19:291–316. doi: 10.1177/1099636215618539. DOI
Rueger Z., Roderic S. Lakes, Cosserat elasticity of negative Poisson’s ratio foam: Experiment. Smart Mater. Struct. 2016;25:054004. doi: 10.1088/0964-1726/25/5/054004. DOI
Koumlis S., Lamberson L. Strain Rate Dependent Compressive Response of Open Cell Polyurethane Foam. Exp. Mech. 2019;59:1087–1103. doi: 10.1007/s11340-019-00521-3. DOI
Yao Y., Yun L., Xu Y., Wang B., Li J., Deng L., Lu H. Fabrication and characterization of auxetic shape memory composite foams. Compos. Part B. 2018;152:1–7. doi: 10.1016/j.compositesb.2018.06.027. DOI
Mohsenizadeh S., Alipour R., Nejad A.F., Rad M.S., Ahmad Z. Experimental investigation on energy absorption of auxetic foam-filled thin-walled square tubes under quasi-static loading. Procedia Manuf. 2015;2:331–336. doi: 10.1016/j.promfg.2015.07.058. DOI
Liu Y., Hong H. A review on auxetic structures and polymeric materials. Sci. Res. Essays. 2010;5:1052–1063.
Rad M.S., Ahmad Z., Alias A. Computational approach in formulating mechanical characteristics of 3D star honeycomb auxetic structure. Adv. Mater. Sci. Eng. 2015;2015
Grima J.N., Elaine M., Daphne A. Auxetic behaviour from connected different-sized squares and rectangles. Proc. R. Soc. A. 2011;467:439–458. doi: 10.1098/rspa.2010.0171. DOI
Chetcuti E., Ellul B., Manicaro E., Brincat J.-P., Attard D., Gatt R., Grima J.N. Modeling auxetic foams through semi-rigid rotating triangles. Physica Status Solidi. 2014;251:297–306. doi: 10.1002/pssb.201384252. DOI
Grima J.N., Gatt R., Alderson A., Evans K.E. On the potential of connected stars as auxetic systems. Mol. Simul. 2005;31:925–935. doi: 10.1080/08927020500401139. DOI
Gibson Lorna J., Michael F.A. Cellular Solids: Structure and Properties. Cambridge University Press; Cambridge, UK: 1999.
Masters I.G., Evans K.E. Models for the elastic deformation of honeycombs. Compos. Struct. 1996;35:403–422. doi: 10.1016/S0263-8223(96)00054-2. DOI
Rahmandoust M., Andreas Ö. On finite element modeling of single-and multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 2012;12:8129–8136. doi: 10.1166/jnn.2012.4521. PubMed DOI
Zhang X.C., Ding H.M., An L.Q., Wang X.L. Numerical investigation on dynamic crushing behavior of auxetic honeycombs with various cell-wall angles. Adv. Mech. Eng. 2015;7:679678. doi: 10.1155/2014/679678. DOI
Hu L., Fanfan Y., Tongxi Y. Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs. Mater. Des. 2013;46:511–523. doi: 10.1016/j.matdes.2012.10.050. DOI
Zou Z., Reid S.R., Tan P.J., Li S., Harrigan J.J. Dynamic crushing of honeycombs and features of shock fronts. Int. J. Impact Eng. 2009;36:165–176. doi: 10.1016/j.ijimpeng.2007.11.008. DOI
Hu L.L., Yu T.X. Dynamic crushing strength of hexagonal honeycombs. Int. J. Impact Eng. 2010;37:467–474. doi: 10.1016/j.ijimpeng.2009.12.001. DOI
Hu L.L., Yu T.X. Mechanical behavior of hexagonal honeycombs under low-velocity impact–theory and simulations. Int. J. Solids Struct. 2013;50:3152–3165. doi: 10.1016/j.ijsolstr.2013.05.017. DOI
Lu Z.-X., Qiang L., Zhen-Yu Y. Predictions of Young’s modulus and negative Poisson’s ratio of auxetic foams. Physica Status Solidi. 2011;248:167–174. doi: 10.1002/pssb.201046120. DOI
Wang H., Lu Z., Yang Z., Li X. A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance. Compos. Struct. 2019;208:758–770. doi: 10.1016/j.compstruct.2018.10.024. DOI
Zhao X., Gao Q., Wang L., Yu Q., Ma Z.D. Dynamic crushing of double-arrowed auxetic structure under impact loading. Mater. Des. 2018;160:527–537. doi: 10.1016/j.matdes.2018.09.041. DOI
Hu L.L., Zhou M.Z., Deng H. Dynamic indentation of auxetic and non-auxetic honeycombs under large deformation. Compos. Struct. 2019;207:323–330. doi: 10.1016/j.compstruct.2018.09.066. DOI
Reid S.R., Peng C. Dynamic uniaxial crushing of wood. Int. J. Impact Eng. 1997;19:531–570. doi: 10.1016/S0734-743X(97)00016-X. DOI
Ruan D., Lu G., Wang B., Yu T.X. In-plane dynamic crushing of honeycombs—A finite element study. Int. J. Impact Eng. 2003;28:161–182. doi: 10.1016/S0734-743X(02)00056-8. DOI
Peirovi S., Pourasghar M., Nejad A.F., Hassan M.A. A study on the different finite element approaches for laser cutting of aluminum alloy sheet. Int. J. Adv. Manuf. Technol. 2017;93:1399–1413. doi: 10.1007/s00170-017-0599-0. DOI
Taghipour A., Parvizian J., Heinze S., Düster A. p-version finite elements and finite cells for finite strain elastoplastic problems. PAMM. 2016;16:243–244. doi: 10.1002/pamm.201610110. DOI
Zeng J., Hu H. Finite Element Analysis of Three-Dimensional (3D) Auxetic Textile Composite under Compression. Polymers. 2018;10:374. doi: 10.3390/polym10040374. PubMed DOI PMC
Dobnik Dubrovski P., Novak N., Borovinšek M., Vesenjak M., Ren Z. In-Plane Behavior of Auxetic Non-Woven Fabric Based on Rotating Square Unit Geometry under Tensile Load. Polymers. 2019;11:1040. doi: 10.3390/polym11061040. PubMed DOI PMC
Zhang W., Zhao S., Sun R., Scarpa F., Wang J. In-Plane Mechanical Behavior of a New Star-Re-Entrant Hierarchical Metamaterial. Polymers. 2019;11:1132. doi: 10.3390/polym11071132. PubMed DOI PMC
Abaqus . Version. 6.14 Documentation. Dassault Systems Simulia Corporation; Providence, RI, USA: 2014.
Marks L.W., Gardner T.N. The use of strain energy as a convergence criterion in the finite element modelling of bone and the effect of model geometry on stress convergence. J. Biomed. Eng. 1993;15:474–476. doi: 10.1016/0141-5425(93)90061-3. PubMed DOI
Lin C.-L., Chih-Han C., Chia-Shin C., Chau-Hsiang W., Huey-Er L. Automatic finite element mesh generation for maxillary second premolar. Computer Methods Programs Biomed. 1999;3:187–195. doi: 10.1016/S0169-2607(99)00004-8. PubMed DOI
Lim H., Corbett C., Battaile J., Bishop E., James W. Investigating mesh sensitivity and polycrystalline RVEs in crystal plasticity finite element simulations. Int. J. Plast. 2019;121:101–115. doi: 10.1016/j.ijplas.2019.06.001. DOI
Ng T.P., Koloor S.S.R., Djuansjah J.R.P., Kadir M.A. Assessment of compressive failure process of cortical bone materials using damage-based model. J. Mech. Behave. Biomed. Mater. 2017;66:1–11. doi: 10.1016/j.jmbbm.2016.10.014. PubMed DOI
Koloor S.S.R., Rahimian-Koloor S.M., Karimzadeh A., Hamdi M., Petrů M., Tamin M.N. Nano-level damage characterization of graphene/polymer cohesive interface under tensile separation. Polymers. 2019;11:1435. doi: 10.3390/polym11091435. PubMed DOI PMC
Koloor S.S.R., Karimzadeh A., Tamin M.N., Abd Shukor M.H. Effects of Sample and Indenter Configurations of Nanoindentation Experiment on the Mechanical Behavior and Properties of Ductile Materials. Metals. 2018;8:421.
Lightweight Glass Fiber-Reinforced Polymer Composite for Automotive Bumper Applications: A Review
Crashworthiness Assessment of Carbon/Glass Epoxy Hybrid Composite Tubes Subjected to Axial Loads
Finite Element Analysis of the Ballistic Impact on Auxetic Sandwich Composite Human Body Armor
Mechanical Behaviour of Pin-Reinforced Foam Core Sandwich Panels Subjected to Low Impact Loading
Hybrid and Synthetic FRP Composites under Different Strain Rates: A Review