• This record comes from PubMed

Using Finite Element Approach for Crashworthiness Assessment of a Polymeric Auxetic Structure Subjected to the Axial Loading

. 2020 Jun 09 ; 12 (6) : . [epub] 20200609

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Polyurethane foams are one of the most common auxetic structures regarding energy absorption enhancement. This present study evaluates the result reliability of two different numerical approaches, the H-method and the P-method, to obtain the best convergence solution. A polymeric re-entrant cell is created with a beam element and the results of the two different methods are compared. Additionally, the numerical results compare well with the analytical solution. The results show that there is a good agreement between converged FE models and the analytical solution. Regarding the computational cost, the P-method is more efficient for simulating the re-entrant structure subjected to axial loading. During the second part of this study, the re-entrant cell is used for generating a polymeric auxetic cellular tube. The mesh convergence study is performed on the cellular structures using the H- and P- methods. The cellular tube is subjected to tensional and compressive loading, the module of elasticity and Poisson's ration to calculate different aspect ratios. A nonlinear analysis is performed to compare the dynamic response of a cellular tube versus a solid tube. The crashworthiness indicators are addressed and the results are compared with equivalent solid tubes. The results show that the auxetic cellular tubes have better responses against compressive loading. The primary outcome of this research is to assess a reliable FE approach for re-entrant structures under axial loading.

See more in PubMed

Prawoto Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio. Comput. Mater. Sci. 2012;58:140–153. doi: 10.1016/j.commatsci.2012.02.012. DOI

Mohsenizadeh S., Alipour R., Shokri Rad M., Nejad A.F., Ahmad Z. Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading. Mater. Des. 2015;88:258–268. doi: 10.1016/j.matdes.2015.08.152. DOI

Zhang X., Yang D. Mechanical properties of auxetic cellular material consisting of re-entrant hexagonal honeycombs. Materials. 2016;9:900. doi: 10.3390/ma9110900. PubMed DOI PMC

Yang W., Li Z.-M., Shi W., Xie B., Yang M.-B. Review on auxetic materials. J. Mater. Sci. 2004;39:3269–3279. doi: 10.1023/B:JMSC.0000026928.93231.e0. DOI

Rad M.S., Hatami H., Alipouri R., Nejad A.F., Omidinasab F. Determination of energy absorption in different cellular auxetic structures. Mech. Ind. 2019;20:302.

Chan N., Evans K.E. Fabrication methods for auxetic foams. J. Mater. Sci. 1997;32:5945–5953. doi: 10.1023/A:1018606926094. DOI

Wojciechowski K.W. Non-chiral, molecular model of negative Poisson ratio in two dimensions. J. Phys. A. 2003;36:11765. doi: 10.1088/0305-4470/36/47/005. DOI

Tretiakov K., Krzysztof V., Wojciechowski W. Poisson’s ratio of simple planar ‘isotropic’ solids in two dimensions. Physica Status Solidi. 2007;244:1038–1046. doi: 10.1002/pssb.200572721. DOI

Rad M.S., Prawoto Y., Ahmad Z. Analytical solution and finite element approach to the 3D re-entrant structures of auxetic materials. Mech. Mater. 2014;74:76–87.

Imbalzano G., Tran P., Ngo T., Lee P.V.S. Three-dimensional modelling of auxetic sandwich panels for localised impact resistance. J. Sandw. Struct. Mater. 2017;19:291–316. doi: 10.1177/1099636215618539. DOI

Rueger Z., Roderic S. Lakes, Cosserat elasticity of negative Poisson’s ratio foam: Experiment. Smart Mater. Struct. 2016;25:054004. doi: 10.1088/0964-1726/25/5/054004. DOI

Koumlis S., Lamberson L. Strain Rate Dependent Compressive Response of Open Cell Polyurethane Foam. Exp. Mech. 2019;59:1087–1103. doi: 10.1007/s11340-019-00521-3. DOI

Yao Y., Yun L., Xu Y., Wang B., Li J., Deng L., Lu H. Fabrication and characterization of auxetic shape memory composite foams. Compos. Part B. 2018;152:1–7. doi: 10.1016/j.compositesb.2018.06.027. DOI

Mohsenizadeh S., Alipour R., Nejad A.F., Rad M.S., Ahmad Z. Experimental investigation on energy absorption of auxetic foam-filled thin-walled square tubes under quasi-static loading. Procedia Manuf. 2015;2:331–336. doi: 10.1016/j.promfg.2015.07.058. DOI

Liu Y., Hong H. A review on auxetic structures and polymeric materials. Sci. Res. Essays. 2010;5:1052–1063.

Rad M.S., Ahmad Z., Alias A. Computational approach in formulating mechanical characteristics of 3D star honeycomb auxetic structure. Adv. Mater. Sci. Eng. 2015;2015

Grima J.N., Elaine M., Daphne A. Auxetic behaviour from connected different-sized squares and rectangles. Proc. R. Soc. A. 2011;467:439–458. doi: 10.1098/rspa.2010.0171. DOI

Chetcuti E., Ellul B., Manicaro E., Brincat J.-P., Attard D., Gatt R., Grima J.N. Modeling auxetic foams through semi-rigid rotating triangles. Physica Status Solidi. 2014;251:297–306. doi: 10.1002/pssb.201384252. DOI

Grima J.N., Gatt R., Alderson A., Evans K.E. On the potential of connected stars as auxetic systems. Mol. Simul. 2005;31:925–935. doi: 10.1080/08927020500401139. DOI

Gibson Lorna J., Michael F.A. Cellular Solids: Structure and Properties. Cambridge University Press; Cambridge, UK: 1999.

Masters I.G., Evans K.E. Models for the elastic deformation of honeycombs. Compos. Struct. 1996;35:403–422. doi: 10.1016/S0263-8223(96)00054-2. DOI

Rahmandoust M., Andreas Ö. On finite element modeling of single-and multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 2012;12:8129–8136. doi: 10.1166/jnn.2012.4521. PubMed DOI

Zhang X.C., Ding H.M., An L.Q., Wang X.L. Numerical investigation on dynamic crushing behavior of auxetic honeycombs with various cell-wall angles. Adv. Mech. Eng. 2015;7:679678. doi: 10.1155/2014/679678. DOI

Hu L., Fanfan Y., Tongxi Y. Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs. Mater. Des. 2013;46:511–523. doi: 10.1016/j.matdes.2012.10.050. DOI

Zou Z., Reid S.R., Tan P.J., Li S., Harrigan J.J. Dynamic crushing of honeycombs and features of shock fronts. Int. J. Impact Eng. 2009;36:165–176. doi: 10.1016/j.ijimpeng.2007.11.008. DOI

Hu L.L., Yu T.X. Dynamic crushing strength of hexagonal honeycombs. Int. J. Impact Eng. 2010;37:467–474. doi: 10.1016/j.ijimpeng.2009.12.001. DOI

Hu L.L., Yu T.X. Mechanical behavior of hexagonal honeycombs under low-velocity impact–theory and simulations. Int. J. Solids Struct. 2013;50:3152–3165. doi: 10.1016/j.ijsolstr.2013.05.017. DOI

Lu Z.-X., Qiang L., Zhen-Yu Y. Predictions of Young’s modulus and negative Poisson’s ratio of auxetic foams. Physica Status Solidi. 2011;248:167–174. doi: 10.1002/pssb.201046120. DOI

Wang H., Lu Z., Yang Z., Li X. A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance. Compos. Struct. 2019;208:758–770. doi: 10.1016/j.compstruct.2018.10.024. DOI

Zhao X., Gao Q., Wang L., Yu Q., Ma Z.D. Dynamic crushing of double-arrowed auxetic structure under impact loading. Mater. Des. 2018;160:527–537. doi: 10.1016/j.matdes.2018.09.041. DOI

Hu L.L., Zhou M.Z., Deng H. Dynamic indentation of auxetic and non-auxetic honeycombs under large deformation. Compos. Struct. 2019;207:323–330. doi: 10.1016/j.compstruct.2018.09.066. DOI

Reid S.R., Peng C. Dynamic uniaxial crushing of wood. Int. J. Impact Eng. 1997;19:531–570. doi: 10.1016/S0734-743X(97)00016-X. DOI

Ruan D., Lu G., Wang B., Yu T.X. In-plane dynamic crushing of honeycombs—A finite element study. Int. J. Impact Eng. 2003;28:161–182. doi: 10.1016/S0734-743X(02)00056-8. DOI

Peirovi S., Pourasghar M., Nejad A.F., Hassan M.A. A study on the different finite element approaches for laser cutting of aluminum alloy sheet. Int. J. Adv. Manuf. Technol. 2017;93:1399–1413. doi: 10.1007/s00170-017-0599-0. DOI

Taghipour A., Parvizian J., Heinze S., Düster A. p-version finite elements and finite cells for finite strain elastoplastic problems. PAMM. 2016;16:243–244. doi: 10.1002/pamm.201610110. DOI

Zeng J., Hu H. Finite Element Analysis of Three-Dimensional (3D) Auxetic Textile Composite under Compression. Polymers. 2018;10:374. doi: 10.3390/polym10040374. PubMed DOI PMC

Dobnik Dubrovski P., Novak N., Borovinšek M., Vesenjak M., Ren Z. In-Plane Behavior of Auxetic Non-Woven Fabric Based on Rotating Square Unit Geometry under Tensile Load. Polymers. 2019;11:1040. doi: 10.3390/polym11061040. PubMed DOI PMC

Zhang W., Zhao S., Sun R., Scarpa F., Wang J. In-Plane Mechanical Behavior of a New Star-Re-Entrant Hierarchical Metamaterial. Polymers. 2019;11:1132. doi: 10.3390/polym11071132. PubMed DOI PMC

Abaqus . Version. 6.14 Documentation. Dassault Systems Simulia Corporation; Providence, RI, USA: 2014.

Marks L.W., Gardner T.N. The use of strain energy as a convergence criterion in the finite element modelling of bone and the effect of model geometry on stress convergence. J. Biomed. Eng. 1993;15:474–476. doi: 10.1016/0141-5425(93)90061-3. PubMed DOI

Lin C.-L., Chih-Han C., Chia-Shin C., Chau-Hsiang W., Huey-Er L. Automatic finite element mesh generation for maxillary second premolar. Computer Methods Programs Biomed. 1999;3:187–195. doi: 10.1016/S0169-2607(99)00004-8. PubMed DOI

Lim H., Corbett C., Battaile J., Bishop E., James W. Investigating mesh sensitivity and polycrystalline RVEs in crystal plasticity finite element simulations. Int. J. Plast. 2019;121:101–115. doi: 10.1016/j.ijplas.2019.06.001. DOI

Ng T.P., Koloor S.S.R., Djuansjah J.R.P., Kadir M.A. Assessment of compressive failure process of cortical bone materials using damage-based model. J. Mech. Behave. Biomed. Mater. 2017;66:1–11. doi: 10.1016/j.jmbbm.2016.10.014. PubMed DOI

Koloor S.S.R., Rahimian-Koloor S.M., Karimzadeh A., Hamdi M., Petrů M., Tamin M.N. Nano-level damage characterization of graphene/polymer cohesive interface under tensile separation. Polymers. 2019;11:1435. doi: 10.3390/polym11091435. PubMed DOI PMC

Koloor S.S.R., Karimzadeh A., Tamin M.N., Abd Shukor M.H. Effects of Sample and Indenter Configurations of Nanoindentation Experiment on the Mechanical Behavior and Properties of Ductile Materials. Metals. 2018;8:421.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...