finite element method
Dotaz
Zobrazit nápovědu
- MeSH
- analýza metodou konečných prvků MeSH
- femur chirurgie MeSH
- fraktury kyčle chirurgie MeSH
- kostní destičky MeSH
- kostní šrouby MeSH
- lidé středního věku MeSH
- lidé MeSH
- reoperace MeSH
- retrospektivní studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- vnitřní fixace fraktury metody přístrojové vybavení MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- práce podpořená grantem MeSH
Úvod a cíl práce: Mechanický přenos zatížení na kost ovlivňuje kromě materiálových vlastností implantátu (mikrodesign), zejména typ použitého závitu a jeho parametry (makrodesign). Rozeznáváme čtyři základní tvary závitů: a) metrický, b) plochý, c) pilovitý, d) obrácený pilovitý a dva modifikované tvary podle ISO TC 150 normy: e) ISO Shallow HA kortikální a f) ISO Deep HB spongiózní. Mechanický přenos charakterizuje míru přenosu mechanického napětí ze závitu do kosti a je menší než jedna. V ideálním případě je roven jedné, ale vlivem odlišné pevnosti a pružnosti kosti a materiálu závitu je obtížné této hodnoty dosáhnout. Byly stanoveny dva cíle studie. Prvním bylo zjistit rozložení napjatosti (tj. tlakového, tahového a smykového napětí) nejčastěji používaných typů závitů zubních implantátů na rozhraní implantát – kost. Druhým cílem byl popis mechanické kompatibility (čili mechanického přenosu zatížení z implantátu na okolní kost) u stejných typů závitů. Metody: Pro modelování vlivu tvaru závitu implantátu na rozložení napětí v místě rozhraní implantát – kost jsme použili metodu konečných prvků v programu MSC Marc (MSC Software s.r.o., ČR) a metodiku podle Gefena, při které jsme analýze podrobili celou délku kontaktu implantátu s kostí. Definování okrajových podmínek. Velikost zatěžující síly byla F = 100 N, směr síly byl totožný s dlouhou osou implantátu a působiště síly bylo v jeho krčkové části.Charakterizování materiálového modelu. K popisu materiálových vlastností kosti jsme použili izotropní model, který definují dvě konstanty: Youngův modul pružnosti (E) a Poissonovo číslo (μ).Definování typu úlohy. Model byl simulován jako prostorová osově symetrická úloha. Výsledky: Z hlediska tahového napětí se ukazuje jako nejlepší závit ISO Shallow HA, v případě tlakového a smykového napětí se jeví nejvhodnějším plochý závit. Výsledky spočítané metodou konečných prvků u všech typů simulovaných závitů potvrzují, že v závitovém spojení je největší podíl napětí soustředěn v prvních cervikálních závitech. Diskuse a závěr: Z provedených simulací plyne, že profil závitu hraje významnou roli v ovlivnění velikosti a rozložení napětí v okolní kosti a mechanické kompatibility. Naše matematická studie neprokazuje, že existuje jeden ideální závit pro dentální implantát.
Introduction, Aim: Mechanical transfer of load onto the bone affects, besides implant material properties (microdesign), especially the type of thread used and its parameters (macrodesign). There are four basic types of thread: a) metric, b) flat, c) saw-tooth, d) inverted saw-tooth and two modified shapes as specified in standard ISO TC 150: e) ISO Shallow HA cortical, and f) ISO Deep HB cancellous. Mechanical transfer is a characteristic of the rate of mechanical stress transfer from thread to bone, which is less than one. The value of one constitutes an ideal situation but due to different strengths and elasticities in the bone and in the thread material, respectively, this value is difficult to achieve. Two objectives were set for the study. The one was to establish stress (tensile, compressive, and shear) distribution with the most used types of dental implant threads at the implant bone contact. The other objective was to characterize mechanical compatibility (or mechanical transfer of load from implant onto adjacent bone) with the same types of thread. Methods: The Finite Element Method using MSC Marc (MSC Software s.r.o.) program and methodology by Amit Gefen were utilized while the entire implant bone contact length was analysed. The model generation process consists of three stages. Definition of boundary conditions. The load force was F = 100N, direction of force was identical with the implant longitudinal axis while the origin of force was at its cervical area.Establishing material model characteristics. Isotropic model, specified with two constants, was used to establish characteristics of material properties: Young’s modulus of elasticity (E) and Poisson’s ratio (μ)Task specifications. The model was simulated as a 3D axisymmetric task. Results: The ISO Shallow HA thread comes out as the best one from the tensile stress’s point of view whereas the flat thread appears to be the most convenient when considering compressive or shear stress. The results computed using the Finite Element Method with all types of threads simulated confirm that the largest part of stress in threaded connection is found in the foremost cervical turns of thread. Discussion and Conclusion: The simulations carried out implicate that the thread cross section shape plays an important role in affecting stress amplitude and distribution adjacent to the bone as well as mechanical compatibility. Our mathematical study does not prove that there is one single ideal type of thread for dental implants.
- Klíčová slova
- dentální implantát, analýza konečných prvků, mechanická kompatibilita, napětí, závit,
- MeSH
- analýza metodou konečných prvků * statistika a číselné údaje MeSH
- kostní šrouby MeSH
- mechanický stres * MeSH
- návrh zubní protézy MeSH
- pevnost v tahu MeSH
- pevnost ve smyku MeSH
- počítačová simulace MeSH
- zubní implantáty * klasifikace normy MeSH
- Publikační typ
- hodnotící studie MeSH
This study investigated the effect of implant thickness and material on deformation and stress distribution within different components of cranial implant assemblies. Using the finite element method, two cranial implants, differing in size and shape, and thicknesses (1, 2, 3 and 4 mm, respectively), were simulated under three loading scenarios. The implant assembly model included the detailed geometries of the mini-plates and micro-screws and was simulated using a sub-modeling approach. Statistical assessments based on the Design of Experiment methodology and on multiple regression analysis revealed that peak stresses in the components are influenced primarily by implant thickness, while the effect of implant material is secondary. On the contrary, the implant deflection is influenced predominantly by implant material followed by implant thickness. The highest values of deformation under a 50 N load were observed in the thinnest (1 mm) Polymethyl Methacrylate implant (Small defect: 0.296 mm; Large defect: 0.390 mm). The thinnest Polymethyl Methacrylate and Polyether Ether Ketone implants also generated stresses in the implants that can potentially breach the materials' yield limit. In terms of stress distribution, the change of implant thickness had a more significant impact on the implant performance than the change of Young's modulus of the implant material. The results indicated that the stresses are concentrated in the locations of fixation; therefore, the detailed models of mini-plates and micro-screws implemented in the finite element simulation provided a better insight into the mechanical performance of the implant-skull system.
BACKGROUND: The spatially varying mechanical properties in finite element models of bone are most often derived from bone density data obtained via quantitative computed tomography. The key step is to accurately and efficiently map the density given in voxels to the finite element mesh. METHODS: The density projection is first formulated in least-squares terms and then discretized using a continuous and discontinuous variant of the finite element method. Both discretization variants are compared with the nodal and element approaches known from the literature. FINDINGS: In terms of accuracy in the L2 norm, energy distance and efficiency, the discontinuous zero-order variant appears to be the most advantageous. The proposed variant sufficiently preserves the spectrum of density at the edges, while keeping computational cost low. INTERPRETATION: The continuous finite element method is analogous to the nodal formulation in the literature, while the discontinuous finite element method is analogous to the element formulation. The two variants differ in terms of implementation, computational cost and ability to preserve the density spectrum. These differences cannot be described and measured by known indirect methods from the literature.
BACKGROUND AND OBJECTIVE: Total knee arthroplasty (TKA) with modern all-polyethylene tibial (APT) components has shown high long-term survival rates and comparable results to those with metal-backed tibial components. Nevertheless, APT components are primarily recommended for older and low-demand patients. There are no evidence-based biomechanical guidelines for orthopaedic surgeons to determine the appropriate lower age limit for implantation of APT components. A biomechanical analysis was assumed to be suitable to evaluate the clinical results in patients under 70 years. The scope of this study was to determine biomechanically the appropriate lower age limit for implantation of APT components. METHODS: To generate data of the highest possible quality, the geometry of the computational models was created based on computed tomography (CT) images of a representative patient. The cortical bone tissue model distinguishes the change in mechanical properties described in three parts from the tibial cut. The cancellous bone material model has a heterogeneous distribution of mechanical properties. The values used to determine the material properties of the tissues were obtained from measurements of a CT dataset comprising 45 patients. RESULTS: Computational modeling showed that in the majority of the periprosthetic volume, the von Mises strain equivalent ranges from 200 to 2700 με; these strain values induce bone modeling and remodeling. The highest measured deformation value was 2910 με. There was no significant difference in the induced mechanical response between bone models of the 60-year and 70-year age groups, and there was <3% difference from the 65-year age group. CONCLUSIONS: Considering in silico limitations, we suggest that APT components could be conveniently used on a bone with mechanical properties of the examined age categories. Under defined loading conditions, implantation of TKA with APT components is expected to induce modeling and remodeling of the periprosthetic tibia. Following clinical validation, the results of our study could modify the indication criteria of the procedure, and lead to more frequent implantation of all-polyethylene TKA in younger patients.
- MeSH
- analýza metodou konečných prvků MeSH
- biomechanika MeSH
- kovy MeSH
- lidé MeSH
- mechanický stres MeSH
- polyethylen MeSH
- protézy - design MeSH
- protézy kolene * MeSH
- tibie diagnostické zobrazování chirurgie MeSH
- totální endoprotéza kolene * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- analýza metodou konečných prvků * využití MeSH
- anizotropie MeSH
- kostní denzita MeSH
- lidé MeSH
- muskuloskeletální systém - fyziologické jevy MeSH
- neuronové sítě * MeSH
- počítačová simulace využití MeSH
- remodelace kosti * fyziologie MeSH
- statistika jako téma MeSH
- teoretické modely MeSH
- zobrazování trojrozměrné využití MeSH
- Check Tag
- lidé MeSH
STATEMENT OF PROBLEM: Accurate implant placement is essential for the success of dental implants. This placement influences osseointegration and occlusal forces. The freehand technique, despite its cost-effectiveness and time efficiency, may result in significant angular deviations compared with guided implantation, but the effect of angular deviations on the stress-strain state of peri-implant bone is unclear. PURPOSE: The purpose of this finite element analysis (FEA) study was to examine the effects of angular deviations on stress-strain states in peri-implant bone. MATERIAL AND METHODS: Computational modeling was used to investigate 4 different configurations of dental implant positions, each with 3 angles of insertion. The model was developed using computed tomography images, and typical mastication forces were considered. Strains were analyzed using the mechanostat hypothesis. RESULTS: The location of the implant had a significant impact on bone strain intensity. An angular deviation of ±5 degrees from the planned inclination did not significantly affect cancellous bone strains, which primarily support the implant. However, it had a substantial effect on strains in the cortical bone near the implant. Such deviations also significantly influenced implant stresses, especially when the support from the cortical bone was uneven or poorly localized. CONCLUSIONS: In extreme situations, angular deviations can lead to overstraining the cortical bone, risking implant failure from unfavorable interaction with the implant. Accurate implant placement is essential to mitigate these risks.
BACKGROUND: Total knee arthroplasty (TKA) with all-polyethylene tibial (APT) components has shown comparable survivorship and clinical outcomes to that with metal-backed tibial (MBT). Although MBT is more frequently implanted, APT equivalents are considered a low-cost variant for elderly patients. A biomechanical analysis was assumed to be suitable to compare the response of the periprosthetic tibia after implantation of TKA NexGen APT and MBT equivalent. METHODS: A standardised load model was used representing the highest load achieved during level walking. The geometry and material models were created using computed tomography data. In the analysis, a material model was created that represents a patient with osteopenia. RESULTS: The equivalent strain distribution in the models of cancellous bone with an APT component showed values above 1000 με in the area below the medial tibial section, with MBT component were primarily localised in the stem tip area. For APT variants, the microstrain values in more than 80% of the volume were in the range from 300 to 1500 με, MBT only in less than 64% of the volume. CONCLUSION: The effect of APT implantation on the periprosthetic tibia was shown as equal or even superior to that of MBT despite maximum strain values occurring in different locations. On the basis of the strain distribution, the state of the bone tissue was analysed to determine whether bone tissue remodelling or remodelling would occur. Following clinical validation, outcomes could eventually modify the implant selection criteria and lead to more frequent implantation of APT components.
BACKGROUND: The aim of this paper was to design a finite element model for a hinged PROSPON oncological knee endoprosthesis and to verify the model by comparison with ankle flexion angle using knee-bending experimental data obtained previously. METHOD: Visible Human Project CT scans were used to create a general lower extremity bones model and to compose a 3D CAD knee joint model to which muscles and ligaments were added. Into the assembly the designed finite element PROSPON prosthesis model was integrated and an analysis focused on the PEEK-OPTIMA hinge pin bushing stress state was carried out. To confirm the stress state analysis results, contact pressure was investigated. The analysis was performed in the knee-bending position within 15.4-69.4° hip joint flexion range. RESULTS: The results showed that the maximum stress achieved during the analysis (46.6 MPa) did not exceed the yield strength of the material (90 MPa); the condition of plastic stability was therefore met. The stress state analysis results were confirmed by the distribution of contact pressure during knee-bending. CONCLUSION: The applicability of our designed finite element model for the real implant behaviour prediction was proven on the basis of good correlation of the analytical and experimental ankle flexion angle data.
- MeSH
- algoritmy MeSH
- analýza metodou konečných prvků MeSH
- analýza selhání vybavení MeSH
- biologické modely * MeSH
- design s pomocí počítače MeSH
- kolenní kloub patofyziologie MeSH
- kosterní svaly patofyziologie MeSH
- lidé MeSH
- mechanický stres MeSH
- modul pružnosti MeSH
- nádory kostí patofyziologie chirurgie MeSH
- pevnost v tahu MeSH
- pevnost v tlaku MeSH
- počítačová simulace MeSH
- protetické vybavení metody MeSH
- protézy - design MeSH
- protézy kolene * MeSH
- šlachy patofyziologie MeSH
- software MeSH
- svalová kontrakce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
INTRODUCTION AND HYPOTHESIS: Objective of this study was to develop an MRI-based finite element model and simulate a childbirth considering the fetal head position in a persistent occiput posterior position. METHODS: The model involves the pelvis, fetal head and soft tissues including the levator ani and obturator muscles simulated by the hyperelastic nonlinear Ogden material model. The uniaxial test was measured using pig samples of the levator to determine the material constants. Vaginal deliveries considering two positions of the fetal head were simulated: persistent occiput posterior position and uncomplicated occiput anterior position. The von Mises stress distribution was analyzed. RESULTS: The material constants of the hyperelastic Ogden model were measured for the samples of pig levator ani. The mean values of Ogden parameters were calculated as: μ1 = 8.2 ± 8.9 GPa; μ2 = 21.6 ± 17.3 GPa; α1 = 0.1803 ± 0.1299; α2 = 15.112 ± 3.1704. The results show the significant increase of the von Mises stress in the levator muscle for the case of a persistent occiput posterior position. For the optimal head position, the maximum stress was found in the anteromedial levator portion at station +8 (mean: 44.53 MPa). For the persistent occiput posterior position, the maximum was detected in the distal posteromedial levator portion at station +6 (mean: 120.28 MPa). CONCLUSIONS: The fetal head position during vaginal delivery significantly affects the stress distribution in the levator muscle. Considering the persistent occiput posterior position, the stress increases evenly 3.6 times compared with the optimal head position.