Investigation on the Curvature Correction Factor of Extension Spring
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32967330
PubMed Central
PMC7560484
DOI
10.3390/ma13184199
PII: ma13184199
Knihovny.cz E-zdroje
- Klíčová slova
- curvature correction factor, extension spring, finite element method, hook orientation, number of coils, spring index,
- Publikační typ
- časopisecké články MeSH
The curvature correction factor is an important parameter in the stress calculation formulation of a helical extension spring, which describes the effect of spring wire curvature on the stress increase towards its inner radius. In this study, the parameters affecting the curvature correction factor were investigated through theoretical and numerical methods. Several finite element (FE) models of an extension spring were generated to obtain the distribution of the tensile stress in the spring. In this investigation, the hook orientation and the number of coils of the extension spring showed significant effects on the curvature correction factor. These parameters were not considered in the theoretical model for the calculation of the curvature correction factor, causing a deviation between the results of the FE model and the theoretical approach. A set of equations is proposed for the curvature correction factor, which relates both the spring index and the number of coils. These equations can be applied directly to the design of extension springs with a higher safety factor.
Zobrazit více v PubMed
Dykhuizen R.C., Robino C.V. Load relaxation of helical extension springs in transient thermal environments. J. Mater. Eng. Perform. 2004;13:151–157. doi: 10.1361/10599490418343. DOI
Paredes M., Stephan T., Orcière H. Enhanced formulae for determining the axial behavior of cylindrical extension springs. Mech. Ind. 2019;20:625. doi: 10.1051/meca/2019067. DOI
Mendi F., Can H., Külekci M.K. Fatigue properties of polypropylene involute rack gear reinforced with metallic springs. Mater. Des. 2006;27:427–433. doi: 10.1016/j.matdes.2004.11.001. DOI
Santiago J.J.D.M., Simões J.D.B., Araújo C.J.D. Thermomechanical Characterization of Superelastic Ni-Ti SMA Helical Extension Springs Manufactured by Investment Casting. Mater. Res. 2019;22 doi: 10.1590/1980-5373-mr-2018-0852. DOI
Wahl A.M. Mechanical Springs. Penton Publishing Company; Cleveland, OH, USA: 1944.
Mulla T.M., Kadam S.J., Kengar V.S. Finite Element Analysis of Helical Coil Compression Spring for Three Wheeler Automotive Front Suspension. Int. J. Mech. Ind. Eng. (IJMIE) 2012;2:74–77.
The Spring Research Association . Engineering Design Guides (Helical Springs) 08. Oxford University Press; Oxford, UK: 1974.
Budynas R.G., Nisbett J.K. Shigley’s Mechanical Engineering Design. 8th ed. McGraw-Hill; New York, NY, USA: 2008. Mechanical Springs.
Shirurkar A., Patil Y., Davidson J.D. Study on extnsion springs hook geometry using FEA technique for moulded case circuit breaker. In: Evangeline S., Rajkumar M.R., Parambath S.G., editors. Recent Advances in Materials, Mechanics and Management. CRC Press; Trivandrum, Kerala, India: 2019. pp. 219–223.
Mohammed R., Zhou H. Synthesis of Variable-Diameter Helical Extension Springs. ASME Int. Mech. Eng. Congr. Expo. 2016;50541:V04AT05A016.
Chaudhury A.N., Datta D. Analysis of prismatic springs of non-circular coil shape and non-prismatic springs of circular coil shape by analytical and finite element methods. J. Comput. Des. Eng. 2017;4:178–191. doi: 10.1016/j.jcde.2017.02.001. DOI
Gzal M., Groper M., Gendelman O. Analytical, experimental and finite element analysis of elliptical cross-section helical spring with small helix angle under static load. Int. J. Mech. Sci. 2017;130:476–486. doi: 10.1016/j.ijmecsci.2017.06.025. DOI
Viet N.V., Zaki W., Umer R., Xu Y. Mathematical model for superelastic shape memory alloy springs with large spring index. Int. J. Solids Struct. 2020;185:159–169. doi: 10.1016/j.ijsolstr.2019.08.022. DOI
Chaudhury A.N., Ghosh A., Banerjee K., Mondal A., Datta D. CAD/CAM, Robotics and Factories of the Future. In: Mandal D.K., Syan C.S., editors. Analysis of Prismatic Springs of Non-Circular Coil Shape Using Finite Element Method. Springer; New Delhi, India: 2016. pp. 243–251.
Nagaya K. Stresses in a Helical Spring of Arbitrary Cross Section with Consideration of End Effects. J. Vib. Acoust. Stress Reliab. Des. 1987;109:289–301. doi: 10.1115/1.3269434. DOI
Carlson H. Spring Designer’s Handbook. Marcel Dekker Inc.; New York, NY, USA: 1978.
Cook R.D. Finite element analysis of closely-coiled helical springs. Comput. Struct. 1990;34:179–180. doi: 10.1016/0045-7949(90)90312-P. DOI
Shigley J.E., Mischke C.R. Standard Handbook of Machine Design. McGraw-Hill; New York, NY, USA: 1996.
Wang Y., Soutis C., Gagliardi L. A finite element and experimental analysis of durability tested springs. MATEC Web Conf. 2018;165:7. doi: 10.1051/matecconf/201816503017. DOI
Ansari A.A., Jain P.K.K. Finite element analysis of helical compression spring for twowheeler automative front suspension. Glob. J. Eng. Sci. Res. 2016;3:22–32.
Sorokin F.D., Su Z. Numerical simulation of the coil spring and investigation the impact of tension and compression to the spring natural frequencies. Vibroeng. Procedia. 2016;8:108–113.
Shimoseki M., Hamano T., Imaizumi T. Role of FEM in Spring Analysis. In: Shimoseki M., Hamano T., Imaizumi T., editors. FEM for Springs. Springer; Berlin/Heidelberg, Gemany: 2003. pp. 53–67.
Thomas H.B., Brown J. Marks’ Calculations for Machine Design. McGraw-Hill; New York, NY, USA: 2005.
Koloor S.S.R., Khosravani M.R., Hamzah R.I.R., Tamin M.N. FE model-based construction and progressive damage processes of FRP composite laminates with different manufacturing processes. Int. J. Mech. Sci. 2018;141:223–235. doi: 10.1016/j.ijmecsci.2018.03.028. DOI
Bilbao S. Numerical Simulation of Spring Reverberation; Proceedings of the 16th International Conference on Digital Audio Effects (DAFx-13); Maynooth, Ireland. 2–4 September 2013.
Rahimian Koloor S.S., Karimzadeh A., Yidris N., Petrů M., Ayatollahi M.R., Tamin M.N. An Energy-Based Concept for Yielding of Multidirectional FRP Composite Structures Using a Mesoscale Lamina Damage Model. Polymers. 2020;12:157. doi: 10.3390/polym12010157. PubMed DOI PMC
Silva L.F.M.d., Öchsner A., Adams R.D. Handbook of Adhesion Technology. Springer; Berlin/Heidelberg, Germany: 2011. pp. 658–712.