Fabrication of High-Quality Polymer Composite Frame by a New Method of Fiber Winding Process
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32370171
PubMed Central
PMC7284781
DOI
10.3390/polym12051037
PII: polym12051037
Knihovny.cz E-zdroje
- Klíčová slova
- experimental verification, mathematical model, matrix calculus, optimization of robot trajectory, polymer composite frame, winding angle, winding of fibers,
- Publikační typ
- časopisecké články MeSH
Polymer composite frame has been frequently used in the main structural body of vehicles in aerospace, automotive, etc., applications. Manufacturing of complex curved composite frame suffer from the lack of accurate and optimum method of winding process that lead to preparation of uniform fiber arrangement in critical location of the curved frame. This article deals with the fabrication of high-quality polymer composite frame through an optimal winding of textile fibers onto a non-bearing core frame using a fiber-processing head and an industrial robot. The number of winding layers of fibers and their winding angles are determined based on the operational load on the composite structure. Ensuring the correct winding angles and thus also the homogeneity of fibers in each winding layer can be achieved by using an industrial robot and by definition of its suitable off-line trajectory for the production cycle. Determination of an optimal off-line trajectory of the end-effector of a robot (robot-end-effector (REE)) is important especially in the case of complicated 3D shaped frames. The authors developed their own calculation procedure to determine the optimal REE trajectory in the composite manufacturing process. A mathematical model of the winding process, matrix calculus (particularly matrices of rotations and translations) and an optimization differential evolution algorithm are used during calculation of the optimal REE trajectory. Polymer composites with greater resistance to failure damage (especially against physical destruction) can be produced using the above mentioned procedure. The procedure was successfully tested in an experimental composite laboratory. Two practical examples of optimal trajectory calculation are included in the article. The described optimization algorithm of REE trajectory is completely independent of the industrial robot type and robot software tools used and can also be used in other composite manufacturing technologies.
Zobrazit více v PubMed
Gay D. Composite Materials: Design and Applications. CRC Press; Boca Raton, FL, USA: 2014.
Koloor S.S.R., Tamin M. Mode-II interlaminar fracture and crack-jump phenomenon in CFRP composite laminate materials. Compos. Struct. 2018;204:594–606. doi: 10.1016/j.compstruct.2018.07.132. DOI
Mlynek J., Petru M., Martinec T. Optimization of Industrial Robot Trajectory in Composite Production; Proceedings of the 2018 18th International Conference on Mechatronics-Mechatronika (ME); Brno, Czech Republic. 5–7 December 2018; pp. 1–6.
Petrů M., Mlynek J., Martinec T. Numerical modelling for optimization of fibres winding process of manufacturing technology for the non-circular aerospaces frames. Manuf. Technol. 2018;18 doi: 10.21062/ujep/59.2018/a/1213-2489/MT/18/1/90. DOI
Kulhavy P., Syrovatkova M., Srb P., Petru M., Samkova A. Irregular Winding of Pre-preg Fibres Aimed at the Local Improvement of Flexural Properties. Tekstilec. 2017;60 doi: 10.14502/Tekstilec2017.60.310-316. DOI
Koloor S.S.R., Khosravani M.R., Hamzah R., Tamin M. FE model-based construction and progressive damage processes of FRP composite laminates with different manufacturing processes. Int. J. Mech. Sci. 2018;141:223–235. doi: 10.1016/j.ijmecsci.2018.03.028. DOI
Wang X., Petrů M., Yu H. The effect of surface treatment on the creep behavior of flax fiber reinforced composites under hygrothermal aging conditions. Constr. Build. Mater. 2019;208:220–227. doi: 10.1016/j.conbuildmat.2019.03.001. DOI
Sharma S., Sowntharya L., Kar K.K. Composite Materials. Springer; Berlin/Heidelberg, Germany: 2017. Polymer-Based Composite Structures: Processing and Applications; pp. 1–36.
Agarwal B.D., Broutman L.J., Chandrashekhara K. Analysis and Performance of Fiber Composites. John Wiley & Sons; New York, NY, USA: 2017.
Sharifi Teshnizi S.H., Koloor S.S.R., Sharifishourabi G., Bin Ayob A., Yahya M.Y. Effect of ply thickness on displacements and stresses in laminated GFRP cylinder subjected to radial load. Adv. Mater. Res. 2012;488–489:367–371. doi: 10.4028/www.scientific.net/AMR.488-489.367. DOI
Curliss D.B., Lincoln J.E. Fiber Winding System for Composite Projectile Barrel Structure. 10,168,117. U.S. Patent. 2016 Nov 17;
Hernandez-Moreno H., Douchin B., Collombet F., Choqueuse D., Davies P. Influence of winding pattern on the mechanical behavior of filament wound composite cylinders under external pressure. Compos. Sci. Technol. 2008;68:1015–1024. doi: 10.1016/j.compscitech.2007.07.020. DOI
Fowler C.P., Orifici A.C., Wang C.H. A review of toroidal composite pressure vessel optimisation and damage tolerant design for high pressure gaseous fuel storage. Int. J. Hydrog. Energy. 2016;41:22067–22089. doi: 10.1016/j.ijhydene.2016.10.039. DOI
McIlhagger A., Archer E., McIlhagger R. Polymer Composites in the Aerospace Industry. Elsevier; Cranfield, UK: 2020. Manufacturing processes for composite materials and components for aerospace applications; pp. 59–81.
Groppe D. Robots improve the quality and cost-effectiveness of composite structures. Ind. Robot. 2000;27:96–102. doi: 10.1108/01439910010315391. DOI
Mlýnek J., Petrů M., Martinec T. Design of composite frames used in agricultural machinery; Proceedings of the 7th TAE; Prague, Czech Republic. 17–20 September 2019.
Koloor S., Abdullah M., Tamin M., Ayatollahi M. Fatigue damage of cohesive interfaces in fiber-reinforced polymer composite laminates. Compos. Sci. Technol. 2019;183:107779. doi: 10.1016/j.compscitech.2019.107779. DOI
Quanjin M., Rejab M., Idris M., Kumar N.M., Merzuki M. Robotic Filament Winding Technique (RFWT) in Industrial Application: A Review of State of the Art and Future Perspectives. Int. Res. J. Eng. Technol. 2018;5:1668–1676.
Shirinzadeh B., Alici G., Foong C.W., Cassidy G. Fabrication process of open surfaces by robotic fibre placement. Robot. Comput.-Integr. Manuf. 2004;20:17–28. doi: 10.1016/S0736-5845(03)00050-4. DOI
Meng Z., Yao L., Bu J., Sun Y. Prediction method for offset compensation on three-dimensional mandrel with spatial irregular shape. J. Ind. Text. 2019 doi: 10.1177/1528083719858766. DOI
Martinec T., Mlýnek J., Petrů M. Calculation of the robot trajectory for the optimum directional orientation of fibre placement in the manufacture of composite profile frames. Robot. Comput.-Integr. Manuf. 2015;35:42–54. doi: 10.1016/j.rcim.2015.02.004. DOI
Sofi T., Neunkirchen S., Schledjewski R. Path calculation, technology and opportunities in dry fiber winding: A review. Adv. Manuf. Polym. Compos. Sci. 2018;4:57–72. doi: 10.1080/20550340.2018.1500099. DOI
Polini W., Sorrentino L. Influence of winding speed and winding trajectory on tension in robotized filament winding of full section parts. Compos. Sci. Technol. 2005;65:1574–1581. doi: 10.1016/j.compscitech.2005.01.007. DOI
Azevedo C.B., Almeida J.H.S., Jr., Flores H.F., Eggers F., Amico S.C. Influence of mosaic pattern on hygrothermally-aged filament wound composite cylinders under axial compression. J. Compos. Mater. 2020 doi: 10.1177/0021998319899144. DOI
Gao J., Pashkevich A., Caro S. New Trends in Mechanism and Machine Science. Springer; Berlin, Germany: 2017. Manipulator motion planning in redundant robotic system for fiber placement process; pp. 243–252.
Chen X., Zhang Y., Xie J., Du P., Chen L. Robot needle-punching path planning for complex surface preforms. Robot. Comput.-Integr. Manuf. 2018;52:24–34. doi: 10.1016/j.rcim.2018.02.004. DOI
Andulkar M.V., Chiddarwar S.S. Incremental approach for trajectory generation of spray painting robot. Ind. Robot. 2015;42:228–241. doi: 10.1108/IR-10-2014-0405. DOI
Gao J., Pashkevich A., Caro S. Optimization of the robot and positioner motion in a redundant fiber placement workcell. Mech. Mach. Theory. 2017;114:170–189. doi: 10.1016/j.mechmachtheory.2017.04.009. DOI
Xiao Y., Du Z., Dong W. Smooth and near time-optimal trajectory planning of industrial robots for online applications. Ind. Robot. 2012;39:169–177. doi: 10.1108/01439911211201636. DOI
Piao S., Zhong Q., Wang X., Gao C. Optimal Trajectory Generation for Soccer Robot Based on Genetic Algorithms; Proceedings of the International Workshop on Computer Science for Environmental Engineering and EcoInformatics; Kunming, China. 29–31 July 2011; pp. 447–451.
Chen Y., Yan L., Wei H., Wang T. Optimal trajectory planning for industrial robots using harmony search algorithm. Ind. Robot. 2013;40:502–512. doi: 10.1108/IR-12-2012-444. DOI
Simba K.R., Uchiyama N., Sano S. Real-time smooth trajectory generation for nonholonomic mobile robots using Bézier curves. Robot. Comput.-Integr. Manuf. 2016;41:31–42. doi: 10.1016/j.rcim.2016.02.002. DOI
Hodgkinson J.M. Mechanical Testing of Advanced Fibre Composites. Elsevier; Cambridge, UK: 2000.
Gay D., Gambelin J. Structural Modelling and Calculus: An Introduction. ISTE LTD; London, UK: 2008.
Koloor S.S.R., Abdul-Latif A., Tamin M.N. Mechanics of composite delamination under flexural loading. Key Eng. Mater. 2011;462–463:726–731. doi: 10.4028/www.scientific.net/KEM.462-463.726. DOI
Koloor S.S.R., Hussin H., Tamin M.N. Mode i interlaminar fracture characterization of CFRP composite laminates. Adv. Mater. Res. 2012;488–489:552–556. doi: 10.4028/www.scientific.net/AMR.488-489.552. DOI
Sharifi Teshnizi S.H., Koloor S.S.R., Sharifishourabi G., Bin Ayob A., Yahya M.Y. Mechanical behavior of GFRP laminated composite pipe subjected to uniform radial patch load. Adv. Mater. Res. 2012;488–489:542–546. doi: 10.4028/www.scientific.net/AMR.488-489.542. DOI
Sciavicco L., Siciliano B. Modelling and Control of Robot Manipulators. Springer; London, UK: 2012.
Rao J.S., Dukkipati R.V. Mechanism and Machine Theory. Wiley; New York, NY, USA: 1989.
Budinský B. Mathematics for Technical Colleges. SNTL; Prague, Czech Republic: 1983. Analytic and Differential Geometry.
Jazar R.N. Theory of Applied Robotics: Kinematics, Dynamics, and Control. 2nd ed. Springer; Berlin, Germany: 2010.
Mlýnek J., Martinec T. Mathematical model of composite manufacture and calculation of robot trajectory; Proceedings of the 16th International Conference on Mechatronics-Mechatronika 2014; Brno, Czech Republic. 3–5 December 2014; pp. 345–351.
Antia H.M. Numerical Methods for Scientists and Engineers. Birkhäuser; Basel, Switzerland: 2002.
Tian L., Collins C. An effective robot trajectory planning method using a genetic algorithm. Mechatronics. 2004;14:455–470. doi: 10.1016/j.mechatronics.2003.10.001. DOI
Price K., Storn R.M., Lampinen J.A. Differential Evolution: A Practical Approach to Global Optimization. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2006.
Knobloch R., Mlýnek J., Srb R. The classic differential evolution algorithm and its convergence properties. Appl. Math. 2017;62:197–208. doi: 10.21136/AM.2017.0274-16. DOI
Hu Z., Xiong S., Su Q., Zhang X. Sufficient conditions for global convergence of differential evolution algorithm. J. Appl. Math. 2013;2013:193196. doi: 10.1155/2013/193196. DOI
Mlýnek J., Knobloch R. Model of shell metal mould heating in the automotive industry. Appl. Math. 2018;63:111–124. doi: 10.21136/AM.2018.0086-17. DOI
Abdi B., Koloor S.S.R., Abdullah M.R., Ayob A., Yahya M.Y.B. Effect of strain-rate on flexural behavior of composite sandwich panel. Appl. Mech. Mater. 2012;229–231:766–770. doi: 10.4028/www.scientific.net/AMM.229-231.766. DOI
Koloor S.S.R., Tamin M.N. Effects of lamina damages on flexural stiffness of CFRP composites; Proceedings of the 8th Asian-Australasian Conference on Composite Materials 2012, ACCM 2012—Composites: Enabling Tomorrow’s Industry Today; Kuala Lumpur, Malaysia. 6–8 November 2012; pp. 237–243.
Schuecker C., Pettermann H. Fiber reinforced laminates: Progressive damage modeling based on failure mechanisms. Arch. Comput. Methods Eng. 2008;15:163–184. doi: 10.1007/s11831-008-9016-z. DOI
Xian G., Wang Z. In: Carbon Fiber Reinforced Plastics—Properties. Comprehensive Composite Materials. Beaumont, Peter W.R., Zweben, Carl H., editors. Volume 2 Elsevier; New York, NY, USA: 2000.
Hallett S.R., Jiang W.-G., Khan B., Wisnom M.R. Modelling the interaction between matrix cracks and delamination damage in scaled quasi-isotropic specimens. Compos. Sci. Technol. 2008;68:80–89. doi: 10.1016/j.compscitech.2007.05.038. DOI
Maimi P., Camanho P., Mayugo J., Turon A. Matrix cracking and delamination in laminated composites. Part II: Evolution of crack density and delamination. Mech. Mater. 2011;43:194–211. doi: 10.1016/j.mechmat.2011.01.002. DOI
Koloor S.S.R., Karimzadeh A., Yidris N., Petrů M., Ayatollahi M.R., Tamin M.N. An energy-based concept for yielding of multidirectional FRP composite structures using a mesoscale lamina damage model. Polymers. 2020;12:157. doi: 10.3390/polym12010157. PubMed DOI PMC
Koloor S., Ayatollahi M., Tamin M. Elastic-damage deformation response of fiber-reinforced polymer composite laminates with lamina interfaces. J. Reinf. Plast. Compos. 2017;36:832–849. doi: 10.1177/0731684417693427. DOI
Slabaugh G.G. Computing Euler angles from a rotation matrix. Retr. August. 1999;6:39–63.
Brunete A., Mateo C., Gambao E., Hernando M., Koskinen J., Ahola J.M., Seppälä T., Heikkila T. User-friendly task level programming based on an online walk-through teaching approach. Ind. Robot. 2016;43:153–163. doi: 10.1108/IR-05-2015-0103. DOI
Luo Z., editor. Robotics, Automation, and Control in Industrial and Service Settings. IGI Global; Hershey, PA, USA: 2015. pp. 1–337. DOI
Klimchik A., Ambiehl A., Garnier S., Furet B., Pashkevich A. Efficiency evaluation of robots in machining applications using industrial performance measure. Robot. Comput.-Integr. Manuf. 2017;48:12–29. doi: 10.1016/j.rcim.2016.12.005. DOI