Fabrication of High-Quality Straight-Line Polymer Composite Frame with Different Radius Parts Using Fiber Winding Process
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
33562606
PubMed Central
PMC7915281
DOI
10.3390/polym13040497
PII: polym13040497
Knihovny.cz E-resources
- Keywords
- mathematical model, polymer composite frame, straight-line composite frame, winding angle, winding of fibers,
- Publication type
- Journal Article MeSH
The extraordinary features of fibrous composites enable advanced industries to design composite structures with superior performance compared to traditional structures. Composite frame structures have been designed frequently as components of mechanical systems to resist lateral and gravity loads. The manufacturing of high-quality composite frames depends primarily on the accurate fiber winding on frames with different pro-files and curved shapes. The optimal fiber winding process on a nonbearing composite frame with a circular cross-section is described in previous works by the same authors. As an extension to that, this study focuses on the manufacturing of straight-line composite frames with different profile radii at multiple locations. Such production procedure allows continuous winding of fibers gradually on individual parts of the frame and generally with different angles of fiber winding. The winding procedure is performed using fiber-processing head and industrial robot. The procedure for calculating the distance of the winding plane of fibers on the frame from the guide-line of the fiber-processing head is targeted. This distance depends on the required angle of fiber winding, the radius of the frame, and the geometric parameters of the fiber-processing head. The coordination of the speed of winding the fibers on the frame and the speed of the passage of the frame through the winding head is also considered. Determining the correct distance of winding the fibers from the corresponding guide-line of fiber-processing head and right coordination of the winding speed and the speed of passage of the frame through the fiber-processing head ensure compliance of the required angles of fiber windings on the frame and homogeneity of winding fibers, which are the two of the most important prerequisites for producing a quality composite frame. The derived theory is well verified on a practical experimental example.
See more in PubMed
Mlýnek J., Petrů M., Martinec T., Koloor S.S.R. Fabrication of High-Quality Polymer Composite Frame by a New Method of Fiber Winding Process. Polymers. 2020;12:1037. doi: 10.3390/polym12051037. PubMed DOI PMC
Abdi B., Koloor S.S.R., Abdullah M.R., Ayob A., Yahya M.Y.B. Effect of strain-rate on flexural behavior of composite sandwich panel. Appl. Mech. Mater. 2012;229–231:766–770. doi: 10.4028/www.scientific.net/AMM.229-231.766. DOI
Koloor S., Abdullah M., Tamin M., Ayatollahi M. Fatigue damage of cohesive interfaces in fiber-reinforced polymer composite laminates. Compos. Sci. Technol. 2019;183:107779. doi: 10.1016/j.compscitech.2019.107779. DOI
Gay D. Composite Materials: Design and Applications. CRC Press; Boca Raton, FL, USA: 2014.
Sharma S., Sowntharya L., Kar K.K. Composite Materials. Springer; Berlin/Heidelberg, Germany: 2017. Polymer-Based Composite Structures: Processing and Applications; pp. 1–36.
McIlhagger A., Archer E., McIlhagger R. Polymer Composites in the Aerospace Industry. Elsevier; Amsterdam, The Netherlands: 2020. Manufacturing processes for composite materials and components for aerospace applications; pp. 59–81.
Koloor S.S.R., Tamin M. Mode-II interlaminar fracture and crack-jump phenomenon in CFRP composite laminate materials. Compos. Struct. 2018;204:594–606. doi: 10.1016/j.compstruct.2018.07.132. DOI
Martinec T., Mlýnek J., Petrů M. Calculation of the robot trajectory for the optimum directional orientation of fibre placement in the manufacture of composite profile frames. Robot. Comput.-Integr. Manuf. 2015;35:42–54. doi: 10.1016/j.rcim.2015.02.004. DOI
Davies P., Choqueuse D., Bigourdan B., Chauchot P. Composite cylinders for deep sea applications: An overview. J. Press. Vessel Technol. 2016;138:060904. doi: 10.1115/1.4033942. DOI
Tian Z.-S., Jia X.-L., Liu B.-Y., Li W.-S. Research and application progress of large-sized carbon fiber composite cylinder in storage and transportation of compressed natural gas. Fiber Reinf. Plast. Compos. 2013;5:62–66.
Koloor S.S.R., Tamin M.N. Effects of lamina damages on flexural stiffness of CFRP composites; Proceedings of 8th Asian-Australasian Conference on Composite Materials 2012, ACCM 2012—Composites: Enabling Tomorrow’s Industry Today; Kuala Lumpur, Malaysia. 6–8 November 2012; pp. 237–243.
Chen G. Advances in Agricultural Machinery and Technologies. CRC Press; Boca Raton, FL, USA: 2018.
Grande D.H., Greist S., Jessie T., Daniel J. 3.18 Composites in Sports Applications. In: Beaumont P.W.R., Zweben C.H., editors. Comprehensive Composite Materials II. Elsevier; Oxford, UK: 2018. pp. 469–526. DOI
Bai X., Li N. The application of carbon fiber composite material for sports equipment. Adv. Mater. Res. 2012;496:480–483. doi: 10.4028/www.scientific.net/AMR.496.480. DOI
Sogard D., Shoemaker S., Smith S.R. Support Structure/Membrane Composite Medical Device. 6,699,276. U.S. Patent. 2004 Mar 2;
Reimink M.S., Ogle M.F. Medical Devices with Polymer/Inorganic Substrate Composites. 7,604,663. U.S. Patent. 2009 Oct 20;
Laney P. Use of composite pipe materials in the transportation of natural gas. INEEL Field Work Proposal 2002. [(accessed on 25 December 2020)]; Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.1163&rep=rep1&type=pdf.
Sebaey T.A. Design of Oil and Gas Composite Pipes for Energy Production. Energy Procedia. 2019;162:146–155. doi: 10.1016/j.egypro.2019.04.016. DOI
Taheri F. 18—Advanced fiber-reinforced polymer (FRP) composites for the manufacture and rehabilitation of pipes and tanks in the oil and gas industry. In: Bai J., editor. Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications. Woodhead Publishing; Cambridge, UK: 2013. pp. 662–704. DOI
Koloor S.S.R., Khosravani M.R., Hamzah R., Tamin M. FE model-based construction and progressive damage processes of FRP composite laminates with different manufacturing processes. Int. J. Mech. Sci. 2018;141:223–235. doi: 10.1016/j.ijmecsci.2018.03.028. DOI
Mlýnek J., Petrů M., Martinec T. Design of composite frames used in agricultural machinery; Proceedings of the 7th TAE; Prague, Czech Republic. 17–20 September 2019.
Mlýnek J., Knobloch R. Model of shell metal mould heating in the automotive industry. Appl. Math. 2018;63:111–124. doi: 10.21136/AM.2018.0086-17. DOI
Mlynek J., Petru M., Martinec T. Optimization of Industrial Robot Trajectory in Composite Production; Proceedings of the 18th International Conference on Mechatronics-Mechatronika (ME); Brno, Czech Republic. 5–7 December 2018; pp. 270–275.
Bratukhin A.G., Bogolyubov V.S. Composite Manufacturing Technology. Springer Netherlands; Dordrecht, The Netherlands: 1994.
Quanjin M., Rejab M., Idris M., Kumar N.M., Merzuki M. Robotic Filament Winding Technique (RFWT) in Industrial Application: A Review of State of the Art and Future Perspectives. Int. Res. J. Eng. Technol. 2018;5:1668–1676.
Durand R.D., Miller M.F. Method for Manufacturing Vehicle Frame Components Using Composite Fiber Pultrusion Techniques. 5,882,460. U.S. Patent. 1999 Mar 16;
Kim J.-S., Lee W.-G. Manufacturing and structural behavior evaluation of composite side beams using autoclave curing and resin transfer moulding method. Int. J. Precis. Eng. Manuf. 2012;13:723–730. doi: 10.1007/s12541-012-0094-3. DOI
Hart D.C. Development of a Progressive Failure Finite Element Analysis for a Braided Composite Fuselage Frame. Virginia Tech; Blacksburg, VA, USA: 2002.
Groppe D. Robots improve the quality and cost-effectiveness of composite structures. Ind. Robot Int. J. 2000;27:96–102. doi: 10.1108/01439910010315391. DOI
Shirinzadeh B., Alici G., Foong C.W., Cassidy G. Fabrication process of open surfaces by robotic fibre placement. Robot. Comput. Integr. Manuf. 2004;20:17–28. doi: 10.1016/S0736-5845(03)00050-4. DOI
Fowler C.P., Orifici A.C., Wang C.H. A review of toroidal composite pressure vessel optimisation and damage tolerant design for high pressure gaseous fuel storage. Int. J. Hydrogen Energy. 2016;41:22067–22089. doi: 10.1016/j.ijhydene.2016.10.039. DOI
Liu C., Shi Y. Design optimization for filament wound cylindrical composite internal pressure vessels considering process-induced residual stresses. Compos. Struct. 2020;235:111755. doi: 10.1016/j.compstruct.2019.111755. DOI
Anderson J.P., Altan M.C. Properties of Composite Cylinders Fabricated by Bladder Assisted Composite Manufacturing. J. Eng. Mater. Technol. 2012;134 doi: 10.1115/1.4007017. DOI
Kehrl D.J., Johnson K.E., McCarville D.A. Curved Composite Frames and Method of Making the Same. 8,349,105. U.S. Patent. 2013 Jan 8;
Sofi T., Neunkirchen S., Schledjewski R. Path calculation, technology and opportunities in dry fiber winding: A review. Adv. Manuf. Polym. Compos. Sci. 2018;4:57–72. doi: 10.1080/20550340.2018.1500099. DOI
Polini W., Sorrentino L. Influence of winding speed and winding trajectory on tension in robotized filament winding of full section parts. Compos. Sci. Technol. 2005;65:1574–1581. doi: 10.1016/j.compscitech.2005.01.007. DOI
Azevedo C.B., Almeida Jr J.H.S., Flores H.F., Eggers F., Amico S.C. Influence of mosaic pattern on hygrothermally-aged filament wound composite cylinders under axial compression. J. Compos. Mater. 2020;54:2651–2659. doi: 10.1177/0021998319899144. DOI
Klimchik A., Ambiehl A., Garnier S., Furet B., Pashkevich A. Efficiency evaluation of robots in machining applications using industrial performance measure. Robot. Comput. Integr. Manuf. 2017;48:12–29. doi: 10.1016/j.rcim.2016.12.005. DOI
Gao J., Pashkevich A., Caro S. New Trends in Mechanism and Machine Science. Springer; Berlin/Heidelberg, Germany: 2017. Manipulator motion planning in redundant robotic system for fiber placement process; pp. 243–252.
Gao J., Pashkevich A., Caro S. Optimization of the robot and positioner motion in a redundant fiber placement workcell. Mech. Mach. Theory. 2017;114:170–189. doi: 10.1016/j.mechmachtheory.2017.04.009. DOI
Mlýnek J., Martinec T. Mathematical model of composite manufacture and calculation of robot trajectory; Proceedings of the 16th International Conference on Mechatronics-Mechatronika; Brno, Czech Republic. 3–5 December 2014; pp. 345–351.
Xiao Y., Du Z., Dong W. Smooth and near time-optimal trajectory planning of industrial robots for online applications. Ind. Robot Int. J. 2012;39:169–177. doi: 10.1108/01439911211201636. DOI
Piao S., Zhong Q., Wang X., Gao C. International Workshop on Computer Science for Environmental Engineering and EcoInformatics. Springer; Berlin/Heidelberg, Germany: 2011. Optimal Trajectory Generation for Soccer Robot Based on Genetic Algorithms; pp. 447–451.
Chen Y., Yan L., Wei H., Wang T. Optimal trajectory planning for industrial robots using harmony search algorithm. Ind. Robot Int. J. 2013;40:502–512. doi: 10.1108/IR-12-2012-444. DOI
Simba K.R., Uchiyama N., Sano S. Real-time smooth trajectory generation for nonholonomic mobile robots using Bézier curves. Robot. Comput. Integr. Manuf. 2016;41:31–42. doi: 10.1016/j.rcim.2016.02.002. DOI
Andulkar M.V., Chiddarwar S.S. Incremental approach for trajectory generation of spray painting robot. Ind. Robot Int. J. 2015 doi: 10.1108/IR-10-2014-0405. DOI
Zhuo M., Lingling Y., Jianqiu B., Yize S. Prediction method for offset compensation on three-dimensional mandrel with spatial irregular shape. J. Ind. Text. 2019 doi: 10.1177/1528083719858766. DOI
Pressley A.N. Elementary Differential Geometry. Springer Science & Business Media; King’s College, London, UK: 2010.
Shankar R. Fundamentals of Physics I: Mechanics, Relativity, and Thermodynamics. Yale University Press; London, UK: 2019.