Chloroplast avoidance movement as a sensitive indicator of relative water content during leaf desiccation in the dark

. 2016 Aug ; 129 (2) : 217-25. [epub] 20160702

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27372712
Odkazy

PubMed 27372712
DOI 10.1007/s11120-016-0291-5
PII: 10.1007/s11120-016-0291-5
Knihovny.cz E-zdroje

In the context of global climate change, drought is one of the major stress factors with negative effect on photosynthesis and plant productivity. Currently, chlorophyll fluorescence parameters are widely used as indicators of plant stress, mainly owing to the rapid, non-destructive and simple measurements this technique allows. However, these parameters have been shown to have limited sensitivity for the monitoring of water deficit as leaf desiccation has relatively small effect on photosystem II photochemistry. In this study, we found that blue light-induced increase in leaf transmittance reflecting chloroplast avoidance movement was much more sensitive to a decrease in relative water content (RWC) than chlorophyll fluorescence parameters in dark-desiccating leaves of tobacco (Nicotiana tabacum L.) and barley (Hordeum vulgare L.). Whereas the inhibition of chloroplast avoidance movement was detectable in leaves even with a small RWC decrease, the chlorophyll fluorescence parameters (F V/F M, V J, Ф PSII, NPQ) changed markedly only when RWC dropped below 70 %. For this reason, we propose light-induced chloroplast avoidance movement as a sensitive indicator of the decrease in leaf RWC. As our measurement of chloroplast movement using collimated transmittance is simple and non-destructive, it may be more suitable in some cases for the detection of plant stresses including water deficit than the conventionally used chlorophyll fluorescence methods.

Zobrazit více v PubMed

PLoS One. 2015 Feb 03;10(2):e0116757 PubMed

Biochim Biophys Acta. 2012 Aug;1817(8):1490-8 PubMed

Photosynth Res. 2008 May;96(2):163-72 PubMed

Plant Physiol. 1992 Sep;100(1):424-32 PubMed

Photosynth Res. 2006 Mar;87(3):303-11 PubMed

J Integr Plant Biol. 2008 Oct;50(10):1292-9 PubMed

Biochim Biophys Acta. 2014 Apr;1837(4):522-30 PubMed

Nature. 2002 Dec 19-26;420(6917):829-32 PubMed

Photosynth Res. 2012 Sep;112(3):153-61 PubMed

J Exp Bot. 2004 Aug;55(403):1607-21 PubMed

Plant Sci. 2013 Sep;210:177-82 PubMed

Plant Sci. 2012 Jan;182:79-86 PubMed

Ann Bot. 2007 Jan;99(1):75-93 PubMed

Mol Plant. 2011 Sep;4(5):771-81 PubMed

Plant Cell Rep. 2010 Jul;29(7):705-14 PubMed

Planta. 2012 Aug;236(2):411-26 PubMed

Photosynth Res. 2010 Sep;105(3):265-71 PubMed

J Plant Physiol. 2010 Jun 15;167(9):709-16 PubMed

Plant Cell Physiol. 2009 Oct;50(10):1736-49 PubMed

Planta. 2004 Jul;219(3):500-6 PubMed

Plant Physiol. 1988 Jan;86(1):16-8 PubMed

Plant Physiol Biochem. 2014 Oct;83:185-93 PubMed

Plant J. 2013 Nov;76(4):568-79 PubMed

Photosynth Res. 1990 Sep;25(3):173-85 PubMed

Plant Physiol. 1996 Jul;111(3):867-875 PubMed

Photosynth Res. 2013 Nov;117(1-3):529-46 PubMed

Biochem Biophys Res Commun. 1994 Nov 30;205(1):638-44 PubMed

Photochem Photobiol. 2015 Jan-Feb;91(1):1-14 PubMed

Photosynth Res. 2000;65(1):29-40 PubMed

J Exp Bot. 2007;58(2):113-7 PubMed

Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13106-11 PubMed

Photosynth Res. 1992 Apr;32(1):23-35 PubMed

J Exp Bot. 2011 May;62(9):3213-21 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...