• This record comes from PubMed

Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy

. 2020 Oct 26 ; 21 (21) : . [epub] 20201026

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
DP180103426 Australian Respiratory Council
DP 130101651 Australian Respiratory Council

Mitochondria are essential cellular organelles, controlling multiple signalling pathways critical for cell survival and cell death. Increasing evidence suggests that mitochondrial metabolism and functions are indispensable in tumorigenesis and cancer progression, rendering mitochondria and mitochondrial functions as plausible targets for anti-cancer therapeutics. In this review, we summarised the major strategies of selective targeting of mitochondria and their functions to combat cancer, including targeting mitochondrial metabolism, the electron transport chain and tricarboxylic acid cycle, mitochondrial redox signalling pathways, and ROS homeostasis. We highlight that delivering anti-cancer drugs into mitochondria exhibits enormous potential for future cancer therapeutic strategies, with a great advantage of potentially overcoming drug resistance. Mitocans, exemplified by mitochondrially targeted vitamin E succinate and tamoxifen (MitoTam), selectively target cancer cell mitochondria and efficiently kill multiple types of cancer cells by disrupting mitochondrial function, with MitoTam currently undergoing a clinical trial.

See more in PubMed

Singh B., Modica-Napolitano J.S., Singh K.K. Defining the Momiome: Promiscuous Information Transfer by Mobile Mitochondria and Mitochondrial Genome. Semin. Cancer Biol. 2017;47:1–17. doi: 10.1016/j.semcancer.2017.05.004. PubMed DOI PMC

Dong L.F., Jiri Neuzil J. Targeting mitochondria as an anticancer strategy. Cancer Commun. 2019;39:63. doi: 10.1186/s40880-019-0412-6. PubMed DOI PMC

Porporato P.E., Filigheddu N., Pedro J.M.B., Kroemer G., Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28:265–280. doi: 10.1038/cr.2017.155. PubMed DOI PMC

Wang Y., Xia Y., Lu Z. Metabolic features of cancer cells. Cancer Commun. 2018;38:65. doi: 10.1186/s40880-018-0335-7. PubMed DOI PMC

Roth K.G., Mambetsariev I., Kulkarni P., Salgia R. The mitochondrion as an emerging therapeutic target in cancer. Trends Mol. Med. 2019;26:119–134. doi: 10.1016/j.molmed.2019.06.009. PubMed DOI PMC

Khutornenko A.A., Roudko V.V., Chernyak B.V., Vartapetian A.B., Chumakov P.M., Evstafieva A.G. Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway. Proc. Natl. Acad. Sci. USA. 2010;107:12828–12833. doi: 10.1073/pnas.0910885107. PubMed DOI PMC

Tan A.S., Baty J.W., Dong L.F., Bezawork-Geleta A., Endaya B., Yan B., Goodwin J., Vondrusova M., Bajzikova M., Peterka M., et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 2015;21:81–94. doi: 10.1016/j.cmet.2014.12.003. PubMed DOI

Dong L.F., Kovarova J., Bajzikova M., Bezawork-Geleta A., Svec D., Endaya B., Schaphibulkij K., Coelho A., Sebkova N., Ruzickova A., et al. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. Elife. 2017;6:e22187. doi: 10.7554/eLife.22187. PubMed DOI PMC

Bajzikova M., Kovarova J., Coelho A.R., Boukalova S., Oh S., Rohlenova K., Svec D., Hubackova S., Endaya B., Judasova K., et al. Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab. 2019;29:399–416. doi: 10.1016/j.cmet.2018.10.014. PubMed DOI PMC

Neuzil J., Dong L.F., Rohlena J., Truksa J., Ralph S.J. Classification of mitocans, anti-cancer drugs acting on mitochondria. Mitochondrion. 2013;13:199–208. doi: 10.1016/j.mito.2012.07.112. PubMed DOI

Mani S., Swargiary G., Singh K.K. Natural Agents Targeting Mitochondria in Cancer. Int. J. Mol. Sci. 2020;21:E6992. doi: 10.3390/ijms21196992. PubMed DOI PMC

Cui Q., Wen S., Huang P. Targeting cancer cell mitochondria as a therapeutic approach: Recent updates. Future Med Chem. 2017;9:929–949. doi: 10.4155/fmc-2017-0011. PubMed DOI

Kalyanaraman B., Cheng G., Hardy M., Ouari O., Lopez M., Joseph J., Jacek Zielonka J., Dwinell M.D. A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds. Redox Biol. 2018;14:316–327. doi: 10.1016/j.redox.2017.09.020. PubMed DOI PMC

Rohlenova K., Schaphibulkij K., Stursa J., Bezawork-Geleta A., Rohlena J., Endaya B., Werner L., Cerny J., Zobalova R., Goodwin J., et al. Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2high Breast Cancer. Antiox. Redox Signal. 2017;26:84–103. doi: 10.1089/ars.2016.6677. PubMed DOI PMC

Dong L.F., Jameson V.J.A., Tilly D., Prochazka L., Rohlena J., Valis K., Truksa J., Zobalova R., Mahdavian E., Kluckova K., et al. Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: A new paradigm of efficient anti-cancer therapy. Free Radic. Biol. Med. 2011;50:1546–1555. doi: 10.1016/j.freeradbiomed.2011.02.032. PubMed DOI

Du X., Zhang P., Fu H., Ahsan H.M., Gao J., Chen Q. Smart mitochondrial targeted cancer therapy: Subcellular distribution, selective TrxR2 inhibition accompany with declined antioxidant capacity. Int. J. Pharm. 2019;555:346–355. doi: 10.1016/j.ijpharm.2018.11.057. PubMed DOI

Noh I., Lee D.Y., Kim H., Jeong C.U., Lee Y., Ahn J.O., Hyun H., Park J.H., Kim Y.C. Enhanced Photodynamic Cancer Treatment by Mitochondria-Targeting and Brominated Near-Infrared Fluorophores. Adv. Sci. 2018;5:1700481. doi: 10.1002/advs.201700481. PubMed DOI PMC

Weinberg S.E., Chandel N.S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 2015;11:9–15. doi: 10.1038/nchembio.1712. PubMed DOI PMC

Schieber M., Chandel N.S. ROS function in redox signalling and oxidative stress. Curr. Biol. 2014;24:R453–R462. doi: 10.1016/j.cub.2014.03.034. PubMed DOI PMC

Zu X.L., Guppy M. Cancer metabolism: Facts, fantasy, and fiction. Biochem. Biophys. Res. Commun. 2004;313:459–465. doi: 10.1016/j.bbrc.2003.11.136. PubMed DOI

Fan J., Kamphorst J.J., Robin M.R., Chung M.K., White E., Shlomi T., Rabinowitz J.D. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 2013;9:712. doi: 10.1038/msb.2013.65. PubMed DOI PMC

Jain R.K., Munn L.L., Fukumura D. Dissecting tumour pathophysiology using intravital microscopy. Nat. Rev. Cancer. 2002;2:266–276. doi: 10.1038/nrc778. PubMed DOI

Min H.Y., Jung Y., Park K.H., Lee H.Y. Papuamine Inhibits Viability of Non-small Cell Lung Cancer Cells by Inducing Mitochondrial Dysfunction. Anticancer Res. 2020;40:323–333. doi: 10.21873/anticanres.13956. PubMed DOI

Caro P., Kishan A.U., Norberg E., Stanley I., Chapuy B., Ficarro S.B., Polak K., Tondera D., Gounarides J., Hong Yin H., et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell. 2012;22:547–560. doi: 10.1016/j.ccr.2012.08.014. PubMed DOI PMC

Vazquez F., Lim J.H., Chim H., Bhalla K., Girnun G., Pierce K., Clish G.B., Granter S.R., Widlund H.R., Bruce MSpiegelman B.M., et al. PGC1a expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell. 2013;23:287–301. doi: 10.1016/j.ccr.2012.11.020. PubMed DOI PMC

Wheaton W.W., Weinberg S.E., Hamanaka R.B., Soberanes S., Sullivan L.B., Anso E., Glasauer A., Dufour E., Mutluet G.M., et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife. 2014;3:e02242. doi: 10.7554/eLife.02242. PubMed DOI PMC

Kasznicki J., Sliwinska A.J. Metformin in cancer prevention and therapy. Ann. Transl. Med. 2014;2:57. PubMed PMC

Missiroli S., Perrone M., Genovese I., Pinton P., Giorgi C. Cancer metabolism and mitochondria: Finding novel mechanisms to fight tumours. Ebiomedicine. 2020;59:102943. doi: 10.1016/j.ebiom.2020.102943. PubMed DOI PMC

Jordan V.C. Fourteenth Gaddum Memorial Lecture. A current view of tamoxifen for the treatment and prevention of breast cancer. Br. J. Pharmacol. 1993;110:507–517. doi: 10.1111/j.1476-5381.1993.tb13840.x. PubMed DOI PMC

Daurio N.A., Tuttle S.W., Worth A.J., Song E.Y., Davis J.M., Snyder N.W., Blair I.A., Koumenis C. AMPK Activation and Metabolic Reprogramming by Tamoxifen Through Estrogen Receptor-Independent Mechanisms Suggests New Uses for This Therapeutic Modality in Cancer Treatment. Cancer Res. 2016;76:3295–3306. doi: 10.1158/0008-5472.CAN-15-2197. PubMed DOI PMC

Lee S., Lee J.S., Seo J., Lee S.H., Kang J.H., Song J., Kim S.Y. Targeting Mitochondrial Oxidative Phosphorylation Abrogated Irinotecan Resistance in NSCLC. Sci. Rep. 2018;8:15707. doi: 10.1038/s41598-018-33667-6. PubMed DOI PMC

Kurelac I., Abarrategi A., Ragazzi M., Iommarini L., Ganesh N.U., Snoeks T., Bonnet D., Porcelli A.M., Malanchi I., Gasparre G. A Humanized Bone Niche Model Reveals Bone Tissue Preservation Upon Targeting Mitochondrial Complex I in Pseudo-Orthotopic Osteosarcoma. J. Clin. Med. 2019;8:2184. doi: 10.3390/jcm8122184. PubMed DOI PMC

Dong L.F., Low P., Dyason J., Wang X.F., Prochazka L., Witting P.K., Freeman R., Swettenham E., Valis K., Liu J., et al. α-Tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene. 2008;27:4324–4335. doi: 10.1038/onc.2008.69. PubMed DOI PMC

Neuzil J., Dyason J.C., Freeman R., Dong L.F., Prochazka L., Wang X.F., Scheffler I.E., Ralph S.J. Mitocans as anti-cancer agents targeting mitochondria: Lessons from studies with vitamin E analogues, inhibitors of complex II. J. Bioenerg. Biomembr. 2007;39:65–72. doi: 10.1007/s10863-006-9060-z. PubMed DOI

Min H.Y., Jang H.J., Park K.H., Hyun S.Y., Park S.J., Kim J.H., Son J., Kang S.S., Lee H.Y. The natural compound gracillin exerts potent antitumor activity by targeting mitochondrial complex II. Cell Death Dis. 2019;10:810. doi: 10.1038/s41419-019-2041-z. PubMed DOI PMC

Zhang X., Fryknäs M., Hernlund E., Fayad W., Milito A.D., Olofsson M.H., Gogvadze V., Dang L., Påhlman S., Schughart L.A.K., et al. Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nat. Commun. 2014;5:3295. doi: 10.1038/ncomms4295. PubMed DOI PMC

Škrtić M., Sriskanthadevan S., Jhas B., Gebbia M., Wang X., Wang Z., Hurren R., Jitkova Y., Gronda M., Maclean N., et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell. 2011;20:674–688. doi: 10.1016/j.ccr.2011.10.015. PubMed DOI PMC

Chae Y.C., Caino M.C., Lisanti S., Ghosh J.C., Dohi T., Danial N.N., Villanueva J., Ferrero S., Vaira V., Santambrogio L., et al. Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s. Cancer Cell. 2012;22:331–344. doi: 10.1016/j.ccr.2012.07.015. PubMed DOI PMC

Bikas A., Jensen K., Patel A., Costello J., Kaltsas G., Hoperia V., Wartofsky L., Burman K., Vasko V. Mitotane induces mitochondrial membrane depolarizationand apoptosis in thyroid cancer cells. Int. J. Oncol. 2019;55:7–20. PubMed PMC

Hensley C.T., Wasti A.T., DeBerardinis R.J. Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J. Clin. Investig. 2013;123:3678–3684. doi: 10.1172/JCI69600. PubMed DOI PMC

Wang J.B., Erickson J.W., Fuji R., Ramachandran S., Gao P., Dinavahi R., Wilson K.F., Ambrosio A.L.B., Dias S.M.G., Dang C.V., et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2010;18:207–219. doi: 10.1016/j.ccr.2010.08.009. PubMed DOI PMC

Le A., Lane A.N., Hamaker M., Bose S., Gouw A., Barbi J., Tsukamoto T., Rojas C.J., Slusher B.S., Zhang H., et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012;15:110–121. doi: 10.1016/j.cmet.2011.12.009. PubMed DOI PMC

Thornburg J.M., Nelson K.K., Clem B.F., Lane A.N., Arumugam S., Simmons A., Eaton J.W., Telang S., Chesney J. Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res. 2008;10:R84. doi: 10.1186/bcr2154. PubMed DOI PMC

Qing G., Li B., Vu A., Skuli N., Walton Z.E., Liu X., Mayes P.A., Wise D.R., Thompson C.B., Maris J.M., et al. ATF4 Regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell. 2012;22:631–644. doi: 10.1016/j.ccr.2012.09.021. PubMed DOI PMC

Golub D., Iyengar N., Dogra S., Wong T., Bready D., Tang K., Modrek A.S., Placantonakis D.G. Mutant Isocitrate Dehydrogenase Inhibitors as Targeted Cancer Therapeutics. Front. Oncol. 2019;9:417. doi: 10.3389/fonc.2019.00417. PubMed DOI PMC

Dunbar E.M., Coats B.S., Shroads A.L., Langaee T., Lew A., Forder J.R., Shuster J.J., Wagner D.A., Stacpoole P.W. Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors. Invest. New Drugs. 2014;32:452–464. doi: 10.1007/s10637-013-0047-4. PubMed DOI PMC

Lei Y., Yi Y., Liu Y., Liu X., Keller E.T., Qian C.N., Jian Zhang J., Yi Lu Y. Metformin targets multiple signaling pathways in cancer. Chin. J. Cancer. 2017;36:17. doi: 10.1186/s40880-017-0184-9. PubMed DOI PMC

Cheng G., Zielonka J., Dranka B.P., McAllister D., Mackinnon A.C., Joseph J., Kalyanaraman B. Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death. Cancer Res. 2012;72:2634–2644. doi: 10.1158/0008-5472.CAN-11-3928. PubMed DOI PMC

Xu Y., Gao W., Zhang Y., Wu S., Liu Y., Deng X., Xie L., Yang J., Yu H., Su J., et al. ABT737 reverses cisplatin resistance by targeting glucose metabolism of human ovarian cancer cells. Int. J. Oncol. 2018;53:1055–1068. doi: 10.3892/ijo.2018.4476. PubMed DOI PMC

Alasadi A., Chen M., Swapna G.V.T., Tao H., Guo J., Collantes J., Fadhil N., Montelione G.T., Jin S. Effect of mitochondrial uncouplers niclosamide ethanolamine (NEN) and oxyclozanide on hepatic metastasis of colon cancer. Cell Death Dis. 2018;9:215. doi: 10.1038/s41419-017-0092-6. PubMed DOI PMC

Raut G.K., Chakrabarti M., Pamarthy D., Bhadra M.P. Glucose starvation-induced oxidative stress causes mitochondrial dysfunction and apoptosis via Prohibitin 1 upregulation in human breast cancer cells. Free Radic. Biol. Med. 2019;145:428–441. doi: 10.1016/j.freeradbiomed.2019.09.020. PubMed DOI

DeNicola G.M., Karreth F.A., Humpton T.J., Gopinathan A., Wei C., Frese K., Mangal D., Yu K.H., Yeo C.J., Calhoun E.S., et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475:106–109. doi: 10.1038/nature10189. PubMed DOI PMC

Gorrini C., Harris I.S., Mak T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013;12:931–947. doi: 10.1038/nrd4002. PubMed DOI

Ippolito L., Giannoni E., Chiarugi P., Parri M. Mitochondrial Redox Hubs as Promising Targets for Anticancer Therapy. Front. Oncol. 2020;10:256. doi: 10.3389/fonc.2020.00256. PubMed DOI PMC

Harris I.S., Brugge J.S. Cancer: The enemy of my enemy is my friend. Nature. 2015;527:170–171. doi: 10.1038/nature15644. PubMed DOI

Panieri E., Santoro M.M. ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Dis. 2016;7:e2253. doi: 10.1038/cddis.2016.105. PubMed DOI PMC

Yun J., Mullarky E., Lu C., Bosch K.N., Kavalier A., Rivera K., Roper J., Chio I.I., Giannopoulou E.G., Rago C., et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science. 2015;350:1391–1396. doi: 10.1126/science.aaa5004. PubMed DOI PMC

Lambeth J.D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 2004;4:181–189. doi: 10.1038/nri1312. PubMed DOI

Kussmaul L., Hirst J. The mechanism of superoxide production by NADH: Ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl. Acad. Sci. USA. 2006;103:7607–7612. doi: 10.1073/pnas.0510977103. PubMed DOI PMC

Quinlan C.L., Orr A.L., Perevoshchikova I.V., Treberg J.R., Ackrell B.A., Brand M.D. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 2012;287:27255–27264. doi: 10.1074/jbc.M112.374629. PubMed DOI PMC

Lewis C.A., Parker S.J., Fiske B.P., McCloskey D., Gui D.Y., Green C.R., Vokes N.I., Feist A.M., Heiden M.G.V., Metallo C.M. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell. 2014;55:253–263. doi: 10.1016/j.molcel.2014.05.008. PubMed DOI PMC

Ning S., Ma S., Saleh A.Q., Guo L., Zhao Z., Chen Y. SHMT2 Overexpression Predicts Poor Prognosis in Intrahepatic Cholangiocarcinoma. Gastroenterol. Res. Pract. 2018;2018:4369253. doi: 10.1155/2018/4369253. PubMed DOI PMC

Ye J., Fan J., Venneti S., Wan Y.W., Pawel B.R., Zhang J., Finley L.W.S., Chao Lu C., Lindsten T., Cross J.R., et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov. 2014;4:1406–1417. doi: 10.1158/2159-8290.CD-14-0250. PubMed DOI PMC

Nilsson R., Jain M., Madhusudhan N., Sheppard N.G., Strittmatter L., Kampf C., Huang J., Asplund A., Mootha V.K. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun. 2014;5:3128. doi: 10.1038/ncomms4128. PubMed DOI PMC

Glasauer A., Sena L.A., Diebold L.P., Mazar A.P., Chandel N.S. Targeting SOD1 reduces experimental non-small-cell lung cancer. J. Clin. Investig. 2014;124:117–128. doi: 10.1172/JCI71714. PubMed DOI PMC

Wang F.X., Liang J.H., Zhang H., Wang Z.H., Wan Q., Tan C.P., Ji L.N., Mao Z.W. Mitochondria-Accumulating Rhenium(I) Tricarbonyl Complexes Induce Cell Death via Irreversible Oxidative Stress and Glutathione Metabolism Disturbance. ACS Appl. Mater. Interfaces. 2019;11:13123–13133. doi: 10.1021/acsami.9b01057. PubMed DOI

Kim R. Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer. 2005;103:1551–1560. doi: 10.1002/cncr.20947. PubMed DOI

Jin Z., El-Deiry W.S. Overview of cell death signaling pathways. Cancer Biol. Ther. 2005;4:139–163. doi: 10.4161/cbt.4.2.1508. PubMed DOI

Yuan S., Akey C.W. Apoptosome structure, assembly, and procaspase activation. Structure. 2013;21:501–551. doi: 10.1016/j.str.2013.02.024. PubMed DOI PMC

Ghobrial I.M., Witzig T.E., Adjei A.A. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin. 2005;55:178–194. doi: 10.3322/canjclin.55.3.178. PubMed DOI

Juárez-Salcedo L.M., Desai V., Dalia S. Venetoclax: Evidence to date and clinical potential. Drugs Context. 2019;8:212574. doi: 10.7573/dic.212574. PubMed DOI PMC

Aghvami M., Ebrahimi F., Zarei M.H., Salimi A., Jaktaji R.P., Pourahmad J. Matrine Induction of ROS Mediated Apoptosis in Human ALL B-lymphocytes Via Mitochondrial Targeting. APJCP. 2018;19:555–560. PubMed PMC

Mongre R.K., Mishra C.B., Prakash A., Jung S., Lee B.S., Kumari S., Jin Hong T., Lee M.S. Novel Carbazole-Piperazine Hybrid Small Molecule Induces Apoptosis by Targeting BCL-2 and Inhibits Tumor Progression in Lung Adenocarcinoma In Vitro and Xenograft Mice Model. Cancers (Basel) 2019;11:1245. doi: 10.3390/cancers11091245. PubMed DOI PMC

Li B., Chen X., Yang W., He J., He K., Xia Z., Zhang J., Xiang G. Single-walled carbon nanohorn aggregates promotes mitochondrial dysfunction-induced apoptosis in hepatoblastoma cells by targeting SIRT3. Int. J. Oncol. 2018;53:1129–1137. doi: 10.3892/ijo.2018.4459. PubMed DOI PMC

Engelbrecht Z., Meijboom R., Cronjé M.J. The ability of silver(I) thiocyanate 4-methoxyphenyl phosphine to induce apoptotic cell death in esophageal cancer cells is correlated to mitochondrial perturbations. Biometals. 2018;31:189–202. doi: 10.1007/s10534-017-0051-9. PubMed DOI

Testa J.R., Bellacosa A. Akt plays a central role in tumorigenesis. Proc. Natl. Acad. Sci. USA. 2001;98:10983–10985. doi: 10.1073/pnas.211430998. PubMed DOI PMC

Chen X., Thakkar H., Tyan F., Gim S., Robinson H., Lee C., Pandey S.K., Nwokorie C., Onwudiwe N., Srivastava R.K. Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene. 2001;20:6073–6083. doi: 10.1038/sj.onc.1204736. PubMed DOI

Hussain A.R., Ahmed S.O., Ahmed M., Khan O.S., AbdulMohsen S.A., Platanias L.C., Al-Kuraya K.S., Uddin S. Cross-talk between NFkB and the PI3-kinase/Akt pathway can be targeted in primary effusion lymphoma (PEL) cell lines for efficient apoptosis. PLoS ONE. 2012;7:e39945. doi: 10.1371/journal.pone.0039945. PubMed DOI PMC

Zhu Y., Rao Q., Zhang X., Zhou X. Galangin induced antitumor effects in human kidney tumor cells mediated via mitochondrial mediated apoptosis, inhibition of cell migration and invasion and targeting PI3K/ AKT/mTOR signalling pathway. JBUON. 2018;23:795–799. PubMed

Bin W.H., Da L.H., Xue Y., Jing B.W. Pterostilbene (3′,5′-dimethoxy-resveratrol) exerts potent antitumor effects in HeLa human cervical cancer cells via disruption of mitochondrial membrane potential, apoptosis induction and targeting m-TOR/PI3K/Akt signalling pathway. JBUON. 2018;23:1384–1389. PubMed

Huang S., Xie T., Liu W. Icariin inhibits the growth of human cervical cancer cells by inducing apoptosis and autophagy by targeting mTOR/PI3K/AKT signalling pathway. JBUON. 2019;24:990–996. PubMed

Moulder D.E., Hatoum D., Tay E., Lin Y., McGowan E.M. The Roles of p53 in Mitochondrial Dynamics and Cancer Metabolism: The Pendulum between Survival and Death in Breast Cancer? Cancers (Basel) 2018;10:189. doi: 10.3390/cancers10060189. PubMed DOI PMC

Galluzzi L., Bravo-San Pedro J.M., Kroemer G. Ferroptosis in p53-dependent oncosuppression and organismal homeostasis. Cell Death Differ. 2015;22:1237–1238. doi: 10.1038/cdd.2015.54. PubMed DOI PMC

Gnanapradeepan K., Basu S., Barnoud T., Budina-Kolomets A., Kung C.P., Murphy M.E. The p53 tumor suppressor in the control of metabolism and ferroptosis. Front. Endocrinol. 2018;9:124. doi: 10.3389/fendo.2018.00124. PubMed DOI PMC

Chipuk J.E. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–1014. doi: 10.1126/science.1092734. PubMed DOI

Scott G.K., Yau C., Becker B.C., Khateeb S., Mahoney S., Jensen M.B., Hann B., Cowen B.J., Pegan S.D., Benz C.C. Targeting Mitochondrial Proline Dehydrogenase with a Suicide Inhibitor to Exploit Synthetic Lethal Interactions with p53 Upregulation and Glutaminase Inhibition. Mol. Cancer Ther. 2019;18:1374–1385. doi: 10.1158/1535-7163.MCT-18-1323. PubMed DOI PMC

Qin Q.P., Wang S.L., Tan M.X., Wang Z.F., Luo D.M., Zou B.Q., Liu Y.C., Yao P.F., Liang H. Novel tacrine platinum (II) complexes display high anticancer activity via inhibition of telomerase activity, dysfunction of mitochondria, and activation of the p53 signaling pathway. Eur. J. Med. Chem. 2018;158:106–122. doi: 10.1016/j.ejmech.2018.09.008. PubMed DOI

Liu W.J., Liu X.J., Xu J., Li L., Li Y., Zhang S.H., Wang J.L., Miao Q.F., Zhen Y.S. EGFR-targeting, β-defensin-tailored fusion protein exhibits high therapeutic efficacy against EGFR-expressed human carcinoma via mitochondria-mediated apoptosis. Acta Pharmacol. Sin. 2018;39:1777–1786. doi: 10.1038/s41401-018-0069-8. PubMed DOI PMC

Peiris-Pagès M., Bonuccelli G., Sotgia F., Lisanti M.P. Mitochondrial fission as a driver of stemness in tumor cells: mDIVI1 inhibits mitochondrial function, cell migration and cancer stem cell (CSC) signalling. Oncotarget. 2018;9:13254–13275. doi: 10.18632/oncotarget.24285. PubMed DOI PMC

Li P., Liu Y., Liu W., Li G., Tang Q., Zhang Q., Leng F., Sheng F., Hu C., Wenjing Lai W., et al. IR-783 inhibits breast cancer cell proliferation and migration by inducing mitochondrial fission. Int. J. Oncol. 2019;55:415–424. doi: 10.3892/ijo.2019.4821. PubMed DOI PMC

DeBerardinis R.J., Mancuso A., Daikhin E., Nissim I., Yudkoff M., Wehrli S., Thompson C.B. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. USA. 2007;104:19345–19350. doi: 10.1073/pnas.0709747104. PubMed DOI PMC

Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Wallace D.C., Fan W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion. 2010;10:12–31. doi: 10.1016/j.mito.2009.09.006. PubMed DOI PMC

Plass C., Pfister S.M., Lindroth A.M., Bogatyrova O., Claus R., Lichter P. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat. Rev. Genet. 2013;14:765–780. doi: 10.1038/nrg3554. PubMed DOI

Hsu C.C., Tseng L.M., Lee H.C. Role of mitochondrial dysfunction in cancer progression. Exp. Biol. Med. 2016;241:1281–1295. doi: 10.1177/1535370216641787. PubMed DOI PMC

Guha M., Avadhani N.G. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion. 2013;13:577–591. doi: 10.1016/j.mito.2013.08.007. PubMed DOI PMC

Zong W.X., Joshua DRabinowitz J.D., White E. Mitochondria and Cancer. Mol. Cell. 2016;61:667–676. doi: 10.1016/j.molcel.2016.02.011. PubMed DOI PMC

Maiuri M.C., Kroemer G. Essential Role for Oxidative Phosphorylation in Cancer Progression. Cell Metab. 2015;21:11–12. doi: 10.1016/j.cmet.2014.12.013. PubMed DOI

Moschoi R., Imbert V., Nebout M., Chiche J., Mary D., Prebet T., Saland E., Castellano R., Pouyet L., Collette Y., et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood. 2016;128:253–264. doi: 10.1182/blood-2015-07-655860. PubMed DOI

Wang J., Liu X., Qiu Y., Shi Y., Cai J., Wang B., Wei X., Ke Q., Sui X., Wang Y., et al. Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. J. Hematol. Oncol. 2018;11:11. doi: 10.1186/s13045-018-0554-z. PubMed DOI PMC

Cline S.D. Mitochondrial DNA damage and its consequences for mitochondrial gene expression. Biochim. Biophys. Acta. 2012;1819:979–991. doi: 10.1016/j.bbagrm.2012.06.002. PubMed DOI PMC

Cao J.J., Zheng Y., Wu X.W., Tan P., Chen M.H., Wu N., Ji L.N., Mao Z.W. Anticancer Cyclometalated Iridium(III) Complexes with Planar Ligands: Mitochondrial DNA Damage and Metabolism Disturbance. J. Med. Chem. 2019;62:3311–3322. doi: 10.1021/acs.jmedchem.8b01704. PubMed DOI

Wang F., Ogasawara M.A., Huang P. Small mitochondria-targeting molecules as anti-cancer agents. Mol. Aspects Med. 2010;31:75–92. doi: 10.1016/j.mam.2009.12.003. PubMed DOI PMC

Heller A., Brockhoff G., Goepferich A. Targeting drugs to mitochondria. Eur. J. Pharm. Biopharm. 2012;82:1–18. doi: 10.1016/j.ejpb.2012.05.014. PubMed DOI

Dong L.F., Jameson V.J.A., Tilly D., Cerny J., Mahdavian E., Marín-Hernández A., Hernández-Esquivel L., Rodríguez-Enríquez S., Stursa J., Witting P.K., et al. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J. Biol. Chem. 2011;286:3717–3728. doi: 10.1074/jbc.M110.186643. PubMed DOI PMC

Battogtokh G., Yong-Yeon Cho Y.Y., Lee J.Y., Lee H.S., Kang H.C. Mitochondrial-targeting anticancer agent conjugates and nanocarrier systems for cancer treatment. Front. Pharmacol. 2018;9:922. doi: 10.3389/fphar.2018.00922. PubMed DOI PMC

Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B. Mitochondria-targeted triphenylphosphonium-based compounds: Syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 2017;117:10043–10120. doi: 10.1021/acs.chemrev.7b00042. PubMed DOI PMC

Rohlena J., Dong L.F., Kluckova K., Zobalova R., Goodwin J., Tilly D., Stursa J., Pecinova A., Philimonenko A., Hozak P., et al. Mitochondrially targeted α-tocopheryl succinate is antiangiogenic: Potential benefit against tumor angiogenesis but caution against wound healing. Antiox. Redox Signal. 2011;15:2923–2935. doi: 10.1089/ars.2011.4192. PubMed DOI PMC

Prochazka L., Koudelka S., Dong L.F., Stursa J., Goodwin J., Neca J., Slavik J., Ciganek M., Masek J., Kluckova K., et al. Mitochondrial targeting overcomes ABCA1-dependent resistance of lung carcinoma to α- tocopheryl succinate. Apoptosis. 2013;18:286–299. doi: 10.1007/s10495-012-0795-1. PubMed DOI

Kovarova J., Bajzikova M., Vondrusova M., Stursa J., Goodwin J., Nguyen M., Zobalova R., Alizadeh E., Truksa J., Tomasetti M., et al. Mitochondrial targeting of α-tocopheryl succinate enhances its anti-mesothelioma efficacy. Redox Rep. 2014;19:16–25. doi: 10.1179/1351000213Y.0000000064. PubMed DOI PMC

Yan B., Stantic M., Zobalova R., Bezawork-Galeta A., Stapelberg M., Stursa J., Prokopova K., Dong L.F., Neuzil J. Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner. BMC Cancer. 2015;15:401. doi: 10.1186/s12885-015-1394-7. PubMed DOI PMC

Boukalova S., Stursa J., Werner L., Ezrova Z., Cerny J., Vanova K., Dong L.F., Pecinova A., Neuzil J. Mitochondrial targeting of metformin enhances its activity against pancreatic cancer. Mol. Cancer Ther. 2016;15:2875–2886. doi: 10.1158/1535-7163.MCT-15-1021. PubMed DOI

Bryant K.G., Chae Y.C., Martinez R.L., Gordon J.C., Elokely K.M., Kossenkov A.V., Grant S., Childers W.E., Abou-Gharbia M., Altieri D.C. A Mitochondrial-targeted purine-based HSP90 antagonist for leukemia therapy. Oncotarget. 2017;8:112184–112198. doi: 10.18632/oncotarget.23097. PubMed DOI PMC

Han M., Vakili M.R., Soleymani Abyaneh H., Molavi O., Lai R., Lavasanifar A. Mitochondrial delivery of doxorubicin via triphenylphosphine modification for overcoming drug resistance in MDA-MB-435/DOX cells. Mol. Pharm. 2014;11:2640–2649. doi: 10.1021/mp500038g. PubMed DOI

Gazzano E., Lazzarato L., Rolando B., Kopecka J., Guglielmo S., Costamagna C., Chegaev K., Riganti C. Mitochondrial delivery of phenol substructure triggers mitochondrial depolarization and apoptosis of cancer cells. Front. Pharm. 2018;9:580. doi: 10.3389/fphar.2018.00580. PubMed DOI PMC

Millard M., Gallagher J.D., Olenyuk B.Z., Neamati N. A selective mitochondrial-targeted chlorambucil with remarkable cytotoxicity in breast and pancreatic cancers. J. Med. Chem. 2013;56:9170–9179. doi: 10.1021/jm4012438. PubMed DOI

Wu S., Cao Q., Wang X., Cheng K., Cheng Z. Design, synthesis and biological evaluation of mitochondria targeting theranostic agents. Chem. Commun. 2014;50:8919–8922. doi: 10.1039/C4CC03296A. PubMed DOI

Chen W.H., Xu X.D., Luo G.F., Jia H.Z., Lei Q., Cheng S.X., Zhuo R.X., Zhang X.Z. Dual-Targeting Pro-apoptotic Peptide for Programmed Cancer Cell Death via Specific Mitochondria Damage. Sci. Rep. 2013;3:3468. doi: 10.1038/srep03468. PubMed DOI PMC

Wang H., Xu W. Mito-methyl coumarin, a novel mitochondria-targeted drug with great antitumor potential was synthesized. Biochem. Biophys. Res. Commun. 2017;489:1–7. doi: 10.1016/j.bbrc.2017.05.116. PubMed DOI

Kirakci K., Zelenka J., Rumlová M., Cvačka J., Ruml T., Lang K. Cationic octahedral molybdenum cluster complexes functionalized with mitochondria-targeting ligands: Photodynamic anticancer and antibacterial activities. Biomater. Sci. 2019;7:1386–1392. doi: 10.1039/C8BM01564C. PubMed DOI

Lei W., Xie J., Hou Y., Jiang G., Zhang H., Wang P., Wang X., Zhang B. Mitochondria-targeting properties and photodynamic activities of porphyrin derivatives bearing cationic pendant. J. Photochem. Photobiol. 2010;B 98:167–171. doi: 10.1016/j.jphotobiol.2009.12.003. PubMed DOI

Sun M., Yang D., Wang C., Bi H., Zhou Y., Wang X., Xu J., He F., Gai S., Yang P. AgBiS2-TPP nanocomposite for mitochondrial targeting photodynamic therapy, photothermal therapy and bio-imaging under 808 nm NIR laser irradiation. Biomater. Sci. 2019;7:4769–4781. doi: 10.1039/C9BM01077G. PubMed DOI

Lampidis T.J., Hasin Y., Weiss M.J., Chen L.B. Selective killing of carcinoma cells “in vitro” by lipophilic-cationic compounds: A cellular basis. Biomed. Pharmacother. 1985;39:220–226. PubMed

Sibrian-Vazquez M., Nesterova I.V., Jensen T.J., Vicente M.G.H. Mitochondria targeting by guanidine-and biguanidine-porphyrin photosensitizers. Bioconjug. Chem. 2018;19:705–713. doi: 10.1021/bc700393u. PubMed DOI

Baracca A., Sgarbi G., Solaini G., Lenaz G. Rhodamine 123 as a probe of mitochondrial membrane potential: Evaluation of proton flux through F0 during ATP synthesis. Biochim. Biophys. Acta. 2003;1606:137–146. doi: 10.1016/S0005-2728(03)00110-5. PubMed DOI

Antonenko Y.N., Avetisyan A.V., Cherepanov D.A., Knorre D.A., Korshunova G.A., Markova O.V., Ojovan S.M., Perevoshchikova I.V., Pustovidko A.V., Rokitskaya T.I., et al. Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers. J. Biol. Chem. 2011;286:17831–17840. doi: 10.1074/jbc.M110.212837. PubMed DOI PMC

Antonenko Y.N., Avetisyan A.V., Bakeeva L.E., Chernyak B.V., Chertkov V.A., Domnina L.V., Ivanova O.Y., Izyumov D.S., Khailova L.S., Klishin S.S., et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: Synthesis and in vitro studies. Biochemistry. 2008;73:1273–1287. doi: 10.1134/S0006297908120018. PubMed DOI

Qian W., Sun D., Zhu R., Du X., Liu H., Wang S. pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release. Int. J. Nanomed. 2012;7:5781–5792. PubMed PMC

Weissig V., Lasch J., Erdos G., Meyer H.W., Rowe T.C., Hughes J. DQAsomes: A novel potential drug and gene delivery system made from Dequalinium. Pharm. Res. 1998;15:334–337. doi: 10.1023/A:1011991307631. PubMed DOI

D’Souza G.G., Rammohan R., Cheng S.M., Torchilin V.P., Weissig V. DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J. Control Release. 2003;92:189–197. doi: 10.1016/S0168-3659(03)00297-9. PubMed DOI

Pajuelo L., Calviño E., Diez J.C., Boyano-Adánez Mdel C., Gil J., Sancho P. Dequalinium induces apoptosis in peripheral blood mononuclear cells isolated from human chronic lymphocytic leukemia. Invest. New Drugs. 2011;29:1156–1163. doi: 10.1007/s10637-010-9454-y. PubMed DOI

Sancho P., Galeano E., Nieto E., Delgado M.D., García-Pérez A.I. Dequalinium induces cell death in human leukemia cells by early mitochondrial alterations which enhance ROS production. Leuk. Res. 2007;31:969–978. doi: 10.1016/j.leukres.2006.11.018. PubMed DOI

Liu Y., Zhang X., Zhou M., Nan X., Chen X., Zhang X. Mitochondrial-targeting lonidamine-doxorubicin nanoparticles for synergistic chemotherapy to conquer drug resistance. ACS Appl. Mater. Interfaces. 2017;9:43498–43507. doi: 10.1021/acsami.7b14577. PubMed DOI

Liu H.N., Guo N.N., Wang T.T., Guo W.W., Lin M.T., Huang-Fu M.Y., Vakili M.R., Xu W.H., Chen J.J., Wei Q.C., et al. Mitochondrial targeted doxorubicin-triphenylphosphonium delivered by hyaluronic acid modified and pH responsive nanocarriers to breast tumor: In vitro and in vivo studies. Mol. Pharm. 2018;15:882–891. doi: 10.1021/acs.molpharmaceut.7b00793. PubMed DOI

Zhang C., Liu Z., Zheng Y., Geng Y., Han C., Shi Y., Sun H., Zhang C., Chen Y., Zhang L., et al. Glycyrrhetinic acid functionalized graphene oxide for mitochondria targeting and cancer treatment in vivo. Small. 2018;14:1703306. doi: 10.1002/smll.201703306. PubMed DOI

Stankovich S., Dikin D.A., Dommett G.H., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.T., Ruoff R.S. Graphene-based composite materials. Nature. 2006;442:282–286. doi: 10.1038/nature04969. PubMed DOI

Salvi M., Fiore C., Armanini D., Toninello A. Glycyrrhetinic acid-induced permeability transition in rat liver mitochondria. Biochem. Pharmacol. 2003;66:2375–2379. doi: 10.1016/j.bcp.2003.08.023. PubMed DOI

Lim S.Y., Shen W., Gao Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015;44:362–381. doi: 10.1039/C4CS00269E. PubMed DOI

Zhang Y., Zhang C., Chen J., Liu L., Hu M., Li J., Bi H. Trackable mitochondria-targeting nanomicellar loaded with doxorubicin for overcoming drug resistance. ACS Appl. Mater. Interfaces. 2017;9:25152–25163. doi: 10.1021/acsami.7b07219. PubMed DOI

Song Y.F., Liu D.Z., Cheng Y., Liu M., Ye W.L., Zhang B.L., Liu X.Y., Zhou S.Y. Dual subcellular compartment delivery of doxorubicin to overcome drug resistant and enhance antitumor activity. Sci. Rep. 2015;5:16125. doi: 10.1038/srep16125. PubMed DOI PMC

Lee J.H., Kim K.Y., Jin H., Baek Y.E., Choi Y., Jung S.H., Lee S.S., Bae J., Jung J.H. Self-Assembled Coumarin Nanoparticle in Aqueous Solution as Selective Mitochondrial-Targeting Drug Delivery System. ACS Appl. Mater. Interfaces. 2018;10:3380–3391. doi: 10.1021/acsami.7b17711. PubMed DOI

Yu H., Li J.M., Deng K., Zhou W., Wang C.X., Wang Q., Li K.H., Zhao H.Y., Huang S.W. Tumor acidity activated triphenylphosphonium-based mitochondrial targeting nanocarriers for overcoming drug resistance of cancer therapy. Theranostics. 2019;9:7033–7050. doi: 10.7150/thno.35748. PubMed DOI PMC

Naz S., Wang M., Han Y., Hu B., Teng L., Zhou J., Zhang H., Chen J. Enzyme-responsive mesoporous silica nanoparticles for tumor cells and mitochondria multistage-targeted drug delivery. Int. J. Nanomed. 2019;14:2533–2542. doi: 10.2147/IJN.S202210. PubMed DOI PMC

Yan J., Chen J., Zhang N., Yang Y., Zhu W., Li L., He B. Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis. J. Mater. Chem. B. 2020;8:492–503. doi: 10.1039/C9TB02266J. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...