Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2high Breast Cancer

. 2017 Jan 10 ; 26 (2) : 84-103. [epub] 20160822

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27392540

AIMS: Expression of the HER2 oncogene in breast cancer is associated with resistance to treatment, and Her2 may regulate bioenergetics. Therefore, we investigated whether disruption of the electron transport chain (ETC) is a viable strategy to eliminate Her2high disease. RESULTS: We demonstrate that Her2high cells and tumors have increased assembly of respiratory supercomplexes (SCs) and increased complex I-driven respiration in vitro and in vivo. They are also highly sensitive to MitoTam, a novel mitochondrial-targeted derivative of tamoxifen. Unlike tamoxifen, MitoTam efficiently suppresses experimental Her2high tumors without systemic toxicity. Mechanistically, MitoTam inhibits complex I-driven respiration and disrupts respiratory SCs in Her2high background in vitro and in vivo, leading to elevated reactive oxygen species production and cell death. Intriguingly, higher sensitivity of Her2high cells to MitoTam is dependent on the mitochondrial fraction of Her2. INNOVATION: Oncogenes such as HER2 can restructure ETC, creating a previously unrecognized therapeutic vulnerability exploitable by SC-disrupting agents such as MitoTam. CONCLUSION: We propose that the ETC is a suitable therapeutic target in Her2high disease. Antioxid. Redox Signal. 26, 84-103.

Zobrazit více v PubMed

Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, and Enriquez JA. Respiratory active mitochondrial supercomplexes. Mol Cell 32: 529–539, 2008 PubMed

Althoff T, Mills DJ, Popot JL, and Kuhlbrandt W. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30: 4652–4664, 2011 PubMed PMC

Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, and Sabatini DM. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162: 540–551, 2015 PubMed PMC

Cerny J, Jurecka P, Hobza P, and Valdes H. Resolution of identity density functional theory augmented with an empirical dispersion term (RI-DFT-D): a promising tool for studying isolated small peptides. J Phys Chem A 111: 1146–1154, 2007 PubMed

Dawood S, Broglio K, Buzdar AU, Hortobagyi GN, and Giordano SH. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. J Clin Oncol 28: 92–98, 2010 PubMed PMC

DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS, and Jemal A. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 64: 252–271, 2014 PubMed

Ding Y, Liu Z, Desai S, Zhao Y, Liu H, Pannell LK, Yi H, Wright ER, Owen LB, Dean-Colomb W, Fodstad O, Lu J, LeDoux SP, Wilson GL, and Tan M. Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism. Nat Commun 3: 1271, 2012 PubMed PMC

Dong LF, Freeman R, Liu J, Zobalova R, Marin-Hernandez A, Stantic M, Rohlena J, Valis K, Rodriguez-Enriquez S, Butcher B, Goodwin J, Brunk UT, Witting PK, Moreno-Sanchez R, Scheffler IE, Ralph SJ, and Neuzil J. Suppression of tumor growth in vivo by the mitocan alpha-tocopheryl succinate requires respiratory complex II. Clin Cancer Res 15: 1593–1600, 2009 PubMed

Dong LF, Jameson VJ, Tilly D, Cerny J, Mahdavian E, Marin-Hernandez A, Hernandez-Esquivel L, Rodriguez-Enriquez S, Stursa J, Witting PK, Stantic B, Rohlena J, Truksa J, Kluckova K, Dyason JC, Ledvina M, Salvatore BA, Moreno-Sanchez R, Coster MJ, Ralph SJ, Smith RA, and Neuzil J. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem 286: 3717–3728, 2011 PubMed PMC

Dong LF, Jameson VJ, Tilly D, Prochazka L, Rohlena J, Valis K, Truksa J, Zobalova R, Mahdavian E, Kluckova K, Stantic M, Stursa J, Freeman R, Witting PK, Norberg E, Goodwin J, Salvatore BA, Novotna J, Turanek J, Ledvina M, Hozak P, Zhivotovsky B, Coster MJ, Ralph SJ, Smith RA, and Neuzil J. Mitochondrial targeting of alpha-tocopheryl succinate enhances its pro-apoptotic efficacy: a new paradigm for effective cancer therapy. Free Radic Biol Med 50: 1546–1555, 2011 PubMed

Dong LF, Low P, Dyason JC, Wang XF, Prochazka L, Witting PK, Freeman R, Swettenham E, Valis K, Liu J, Zobalova R, Turanek J, Spitz DR, Domann FE, Scheffler IE, Ralph SJ, and Neuzil J. Alpha-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 27: 4324–4335, 2008 PubMed PMC

Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, and Wicha MS. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17: 1253–1270, 2003 PubMed PMC

Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, and Muller WJ. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci U S A 89: 10578–10582, 1992 PubMed PMC

Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, Frederick DT, Hurley AD, Nellore A, Kung AL, Wargo JA, Song JS, Fisher DE, Arany Z, and Widlund HR. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 23: 302–315, 2013 PubMed PMC

Kim EM, Park JK, Hwang SG, Kim WJ, Liu ZG, Kang SW, and Um HD. Nuclear and cytoplasmic p53 suppress cell invasion by inhibiting respiratory Complex-I activity via Bcl-2 family proteins. Oncotarget 5: 8452–8465, 2014 PubMed PMC

Kluckova K, Dong LF, Bajzikova M, Rohlena J, and Neuzil J. Evaluation of respiration of mitochondria in cancer cells exposed to mitochondria-targeted agents. Methods Mol Biol 1265: 181–194, 2015 PubMed

Kluckova K, Sticha M, Cerny J, Mracek T, Dong L, Drahota Z, Gottlieb E, Neuzil J, and Rohlena J. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation. Cell Death Dis 6: e1749, 2015 PubMed PMC

Kordes S, Pollak MN, Zwinderman AH, Mathot RA, Weterman MJ, Beeker A, Punt CJ, Richel DJ, and Wilmink JW. Metformin in patients with advanced pancreatic cancer: a double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol 16: 839–847, 2015 PubMed

Kussmaul L. and Hirst J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci U S A 103: 7607–7612, 2006 PubMed PMC

Kwong JQ, Henning MS, Starkov AA, and Manfredi G. The mitochondrial respiratory chain is a modulator of apoptosis. J Cell Biol 179: 1163–1177, 2007 PubMed PMC

Lapuente-Brun E, Moreno-Loshuertos R, Acin-Perez R, Latorre-Pellicer A, Colas C, Balsa E, Perales-Clemente E, Quiros PM, Calvo E, Rodriguez-Hernandez MA, Navas P, Cruz R, Carracedo A, Lopez-Otin C, Perez-Martos A, Fernandez-Silva P, Fernandez-Vizarra E, and Enriquez JA. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340: 1567–1570, 2013 PubMed

LeBleu VS, O'Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, de Carvalho FM, Damascena A, Domingos Chinen LT, Rocha RM, Asara JM, and Kalluri R. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 16: 992–1003, 1–15, 2014 PubMed PMC

Lega IC, Austin PC, Gruneir A, Goodwin PJ, Rochon PA, and Lipscombe LL. Association between metformin therapy and mortality after breast cancer: a population-based study. Diabetes Care 36: 3018–3026, 2013 PubMed PMC

Maranzana E, Barbero G, Falasca AI, Lenaz G, and Genova ML. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal 19: 1469–1480, 2013 PubMed PMC

Moreira PI, Custodio J, Moreno A, Oliveira CR, and Santos MS. Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure. J Biol Chem 281: 10143–10152, 2006 PubMed

Moreno-Lastres D, Fontanesi F, Garcia-Consuegra I, Martin MA, Arenas J, Barrientos A, and Ugalde C. Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab 15: 324–335, 2012 PubMed PMC

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, and Olson AJ. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30: 2785–2791, 2009 PubMed PMC

Murphy MP. and Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47: 629–656, 2007 PubMed

Neuzil J, Weber T, Gellert N, and Weber C. Selective cancer cell killing by alpha-tocopheryl succinate. Br J Cancer 84: 87–89, 2001 PubMed PMC

Neuzil J, Weber T, Schroder A, Lu M, Ostermann G, Gellert N, Mayne GC, Olejnicka B, Negre-Salvayre A, Sticha M, Coffey RJ, and Weber C. Induction of cancer cell apoptosis by alpha-tocopheryl succinate: molecular pathways and structural requirements. FASEB J 15: 403–415, 2001 PubMed

Pesta D. and Gnaiger E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810: 25–58, 2012 PubMed

Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ, and Morrison SJ. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527: 186–191, 2015 PubMed PMC

Prochazka L, Koudelka S, Dong LF, Stursa J, Goodwin J, Neca J, Slavik J, Ciganek M, Masek J, Kluckova K, Nguyen M, Turanek J, and Neuzil J. Mitochondrial targeting overcomes ABCA1-dependent resistance of lung carcinoma to alpha-tocopheryl succinate. Apoptosis 18: 286–299, 2013 PubMed

Pulaski BA. and Ostrand-Rosenberg S. Mouse 4T1 breast tumor model. Curr Protoc Immunol Chapter 20: Unit 20 2, 2001 PubMed

Reni M, Dugnani E, Cereda S, Belli C, Balzano G, Nicoletti R, Liberati D, Pasquale V, Scavini M, Maggiora P, Sordi V, Lampasona V, Ceraulo D, Di Terlizzi G, Doglioni C, Falconi M, and Piemonti L. (Ir)relevance of metformin treatment in patients with metastatic pancreatic cancer: an open-label, randomized phase 2 trial. Clin Cancer Res 22: 1076–1085, 2016 PubMed

Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, Speicher D, Korbel C, Laschke MW, Gimotty PA, Philipp SE, Krause E, Patzold S, Villanueva J, Krepler C, Fukunaga-Kalabis M, Hoth M, Bastian BC, Vogt T, and Herlyn M. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell 23: 811–825, 2013 PubMed PMC

Rohlena J, Dong LF, Kluckova K, Zobalova R, Goodwin J, Tilly D, Stursa J, Pecinova A, Philimonenko A, Hozak P, Banerjee J, Ledvina M, Sen CK, Houstek J, Coster MJ, and Neuzil J. Mitochondrially targeted alpha-tocopheryl succinate is antiangiogenic: potential benefit against tumor angiogenesis but caution against wound healing. Antioxid Redox Signal 15: 2923–2935, 2011 PubMed PMC

Rohlena J, Dong LF, and Neuzil J. Targeting the mitochondrial electron transport chain complexes for the induction of apoptosis and cancer treatment. Curr Pharm Biotechnol 14: 377–389, 2013 PubMed

Rohlena J, Dong LF, Ralph SJ, and Neuzil J. Anticancer drugs targeting the mitochondrial electron transport chain. Antioxid Redox Signal 15: 2951–2974, 2011 PubMed

Rohlenova K, Neuzil J, and Rohlena J. The role of Her2 and other oncogenes of the PI3K/AKT pathway in mitochondria. Biol Chem 397: 607–615, 2016 PubMed

Santidrian AF, Matsuno-Yagi A, Ritland M, Seo BB, LeBoeuf SE, Gay LJ, Yagi T, and Felding-Habermann B. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J Clin Invest 123: 1068–1081, 2013 PubMed PMC

Saura C, Bendell J, Jerusalem G, Su S, Ru Q, De Buck S, Mills D, Ruquet S, Bosch A, Urruticoechea A, Beck JT, Di Tomaso E, Sternberg DW, Massacesi C, Hirawat S, Dirix L, and Baselga J. Phase Ib study of Buparlisib plus Trastuzumab in patients with HER2-positive advanced or metastatic breast cancer that has progressed on Trastuzumab-based therapy. Clin Cancer Res 20: 1935–1945, 2014 PubMed

Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY, Gao S, Puigserver P, and Brugge JS. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461: 109–113, 2009 PubMed PMC

Siegel RL, Miller KD, and Jemal A. Cancer statistics, 2015. CA Cancer J Clin 65: 5–29, 2015 PubMed

Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, and McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182, 1987 PubMed

Soderberg K, Mascarello JT, Breen GA, and Scheffler IE. Respiration-deficient Chinese hamster cell mutants: genetic characterization. Somatic Cell Genet 5: 225–240, 1979 PubMed

Soderberg KL, Ditta GS, and Scheffler IE. Mammalian cells with defective mitochondrial functions: a Chinese hamster mutant cell line lacking succinate dehydrogenase activity. Cell 10: 697–702, 1977 PubMed

Spinazzi M, Casarin A, Pertegato V, Salviati L, and Angelini C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc 7: 1235–1246, 2012 PubMed

Stapelberg M, Zobalova R, Nguyen MN, Walker T, Stantic M, Goodwin J, Pasdar EA, Thai T, Prokopova K, Yan B, Hall S, de Pennington N, Thomas SR, Grant G, Stursa J, Bajzikova M, Meedeniya AC, Truksa J, Ralph SJ, Ansorge O, Dong LF, and Neuzil J. Indoleamine-2,3-dioxygenase elevated in tumor-initiating cells is suppressed by mitocans. Free Radic Biol Med 67: 41–50, 2014 PubMed

Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, and Vander Heiden MG. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162: 552–563, 2015 PubMed PMC

Tan AS, Baty JW, Dong LF, Bezawork-Geleta A, Endaya B, Goodwin J, Bajzikova M, Kovarova J, Peterka M, Yan B, Pesdar EA, Sobol M, Filimonenko A, Stuart S, Vondrusova M, Kluckova K, Sachaphibulkij K, Rohlena J, Hozak P, Truksa J, Eccles D, Haupt LM, Griffiths LR, Neuzil J, and Berridge MV. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab 21: 81–94, 2015 PubMed

Treberg JR, Quinlan CL, and Brand MD. Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). J Biol Chem 286: 27103–27110, 2011 PubMed PMC

Truksa J, Dong LF, Rohlena J, Stursa J, Vondrusova M, Goodwin J, Nguyen M, Kluckova K, Rychtarcikova Z, Lettlova S, Spacilova J, Stapelberg M, Zoratti M, and Neuzil J. Mitochondrially targeted vitamin E succinate modulates expression of mitochondrial DNA transcripts and mitochondrial biogenesis. Antioxid Redox Signal 22: 883–900, 2015 PubMed

Viale A, Corti D, and Draetta GF. Tumors and mitochondrial respiration: a neglected connection. Cancer Res 75: 3687–3691, 2015 PubMed

Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M, Carugo A, Green T, Seth S, Giuliani V, Kost-Alimova M, Muller F, Colla S, Nezi L, Genovese G, Deem AK, Kapoor A, Yao W, Brunetto E, Kang Y, Yuan M, Asara JM, Wang YA, Heffernan TP, Kimmelman AC, Wang H, Fleming JB, Cantley LC, DePinho RA, and Draetta GF. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514: 628–632, 2014 PubMed PMC

Voss NR. and Gerstein M. 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res 38: W555–W562, 2010 PubMed PMC

Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, and Chandel NS. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 107: 8788–8793, 2010 PubMed PMC

Wolf DA. Is reliance on mitochondrial respiration a “chink in the armor” of therapy-resistant cancer? Cancer Cell 26: 788–795, 2014 PubMed PMC

Zhang Q, Raje V, Yakovlev VA, Yacoub A, Szczepanek K, Meier J, Derecka M, Chen Q, Hu Y, Sisler J, Hamed H, Lesnefsky EJ, Valerie K, Dent P, and Larner AC. Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation of serine 727. J Biol Chem 288: 31280–31288, 2013 PubMed PMC

Zickermann V, Wirth C, Nasiri H, Siegmund K, Schwalbe H, Hunte C, and Brandt U. Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347: 44–49, 2015 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

NDRG1 acts as an oncogene in triple-negative breast cancer and its loss sensitizes cells to mitochondrial iron chelation

. 2024 ; 15 () : 1422369. [epub] 20240625

Characterizing OXPHOS inhibitor-mediated alleviation of hypoxia using high-throughput live cell-imaging

. 2024 May 03 ; 12 (1) : 13. [epub] 20240503

Chelation of Mitochondrial Iron as an Antiparasitic Strategy

. 2024 Feb 09 ; 10 (2) : 676-687. [epub] 20240130

Disordered-to-ordered transitions in assembly factors allow the complex II catalytic subunit to switch binding partners

. 2024 Jan 11 ; 15 (1) : 473. [epub] 20240111

Mitochondrially targeted tamoxifen as anticancer therapy: case series of patients with renal cell carcinoma treated in a phase I/Ib clinical trial

. 2023 ; 15 () : 17588359231197957. [epub] 20230930

MitoTam-01 Trial: Mitochondrial Targeting as Plausible Approach to Cancer Therapy. Comment on Yap et al. Complex I Inhibitor of Oxidative Phosphorylation in Advanced Solid Tumors and Acute Myeloid Leukemia: Phase I Trials. Nat. Med. 2023, 29, 115-126

. 2023 Sep 08 ; 15 (18) : . [epub] 20230908

Mitochondrially targeted tamoxifen in patients with metastatic solid tumours: an open-label, phase I/Ib single-centre trial

. 2023 Mar ; 57 () : 101873. [epub] 20230223

Effects of metabolic cancer therapy on tumor microenvironment

. 2022 ; 12 () : 1046630. [epub] 20221213

Repurposing of MitoTam: Novel Anti-Cancer Drug Candidate Exhibits Potent Activity against Major Protozoan and Fungal Pathogens

. 2022 Aug 16 ; 66 (8) : e0072722. [epub] 20220720

Mitochondrially targeted tamoxifen alleviates markers of obesity and type 2 diabetes mellitus in mice

. 2022 Apr 06 ; 13 (1) : 1866. [epub] 20220406

Simultaneous targeting of mitochondrial metabolism and immune checkpoints as a new strategy for renal cancer therapy

. 2022 Mar ; 12 (3) : e645.

SMAD4 loss limits the vulnerability of pancreatic cancer cells to complex I inhibition via promotion of mitophagy

. 2021 Apr ; 40 (14) : 2539-2552. [epub] 20210308

Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy

. 2020 Oct 26 ; 21 (21) : . [epub] 20201026

Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells

. 2019 Feb 05 ; 29 (2) : 399-416.e10. [epub] 20181115

Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2

. 2019 Jan ; 26 (2) : 276-290. [epub] 20180521

Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints

. 2018 Jun 07 ; 9 (1) : 2221. [epub] 20180607

Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells

. 2017 Feb 15 ; 6 () : . [epub] 20170215

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...