MitoTam-01 Trial: Mitochondrial Targeting as Plausible Approach to Cancer Therapy. Comment on Yap et al. Complex I Inhibitor of Oxidative Phosphorylation in Advanced Solid Tumors and Acute Myeloid Leukemia: Phase I Trials. Nat. Med. 2023, 29, 115-126
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37760446
PubMed Central
PMC10526283
DOI
10.3390/cancers15184476
PII: cancers15184476
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A recent paper published in Nature Medicine reported on the Phase I clinical trial of a mitochondria-targeting anti-cancer agent IACS-01059 in patients with acute myeloid leukemia (AML) and solid tumors [...].
1st Faculty of Medicine Charles University 121 08 Prague Czech Republic
Faculty of Science Charles University 128 00 Prague Czech Republic
General University Hospital Charles University 128 08 Prague Czech Republic
Institute of Biotechnology Czech Academy of Sciences 252 50 Prague Czech Republic
School of Pharmacy and Medical Science Griffith University Southport Qld 4222 Australia
Cancers (Basel). 29:115. PubMed
Zobrazit více v PubMed
Yap T.A., Daver N., Mahendra M., Zhang J., Kamiya-Matsuoka C., Meric-Bernstam F., Kantarjian H.M., Ravandi F., Collins M.E., Di Francesco M.E., et al. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: Phase I trials. Nat. Med. 2023;29:115–126. doi: 10.1038/s41591-022-02103-8. PubMed DOI PMC
Vangapandu H.V., Alston B., Morse J., Ayres M.L., Wierda W.G., Keating M.J., Marszalek J.R., Gandhi V. Biological and metabolic effects of IACS-010759, an OxPhos inhibitor, on chronic lymphocytic leukemia cells. Oncotarget. 2018;9:24980–24991. doi: 10.18632/oncotarget.25166. PubMed DOI PMC
Tsuji A., Akao T., Masuya T., Murai M., Miyoshi H. IACS-010759, a potent inhibitor of glycolysis-deficient hypoxic tumor cells, inhibits mitochondrial respiratory complex I through a unique mechanism. J Biol Chem. 2020;295:7481–7491. doi: 10.1074/jbc.RA120.013366. PubMed DOI PMC
Bajpai R., Sharma A., Achreja A., Edgar C.L., Wei C., Siddiqa A.A., Gupta V.A., Matulis S.M., McBrayer S.K., Mittal A., et al. Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma. Nat. Commun. 2020;11:1–16. doi: 10.1038/s41467-020-15051-z. PubMed DOI PMC
Chen D., Barsoumian H.B., Fischer G., Yang L., Verma V., Younes A.I., Hu Y., Masropour F., Klein K., Vellano C., et al. Combination treatment with radiotherapy and a novel oxidative phosphorylation inhibitor overcomes PD-1 resistance and enhances antitumor immunity. J. Immunother. Cancer. 2020;8:e000289. doi: 10.1136/jitc-2019-000289. PubMed DOI PMC
Baran N., Lodi A., Dhungana Y., Herbrich S., Collins M., Sweeney S., Pandey R., Skwarska A., Patel S., Tremblay M., et al. Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia. Nat. Commun. 2022;13:1–20. doi: 10.1038/s41467-022-30396-3. PubMed DOI PMC
Bassal M.A., Samaraweera S.E., Lim K., Benard B.A., Bailey S., Kaur S., Leo P., Toubia J., Thompson-Peach C., Nguyen T., et al. Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia. Nat. Commun. 2022;13:2614. doi: 10.1038/s41467-022-30223-9. PubMed DOI PMC
Molina J.R., Sun Y., Protopopova M., Gera S., Bandi M., Bristow C., McAfoos T., Morlacchi P., Ackroyd J., Agip A.-N.A., et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 2020;24:1036–1046. doi: 10.1038/s41591-018-0052-4. PubMed DOI
Zhang X., Dang C.V. Time to hit pause on mitochondria-targeting cancer therapies. Nat. Med. 2023;29:29–30. doi: 10.1038/s41591-022-02129-y. PubMed DOI PMC
Alistar A., Morris B.B., Desnoyer R., Klepin H.D., Hosseinzadeh K., Clark C., Cameron A., Leyendecker J., D’Agostino R., Jr., Topaloglu U., et al. Safety and tolerability of the first-in-class agent CPI-613 in combination with modified FOLFIRINOX in pa-tients with metastatic pancreatic cancer: A single-centre, open-label, dose-escalation, phase 1 trial. Lancet Oncol. 2017;18:770–778. doi: 10.1016/S1470-2045(17)30314-5. PubMed DOI PMC
Murphy M.P., Smith R.A. Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations. Annu. Rev. Pharmacol. Toxicol. 2007;47:629–656. doi: 10.1146/annurev.pharmtox.47.120505.105110. PubMed DOI
Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B. Mitochondria-targeted triphenylphosphonium-based compounds: Syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 2017;117:10043–10120. doi: 10.1021/acs.chemrev.7b00042. PubMed DOI PMC
Rohlenova K., Sachaphibulkij K., Stursa J., Bezawork-Geleta A., Blecha J., Endaya B., Werner L., Cerny J., Zobalova R., Goodwin J., et al. Selective disruption of respiratory supercomplexes as a new strategy to suppress Her2high breast cancer. Antioxid. Redox. Signal. 2017;26:84–103. doi: 10.1089/ars.2016.6677. PubMed DOI PMC
Stemberkova-Hubackova S., Zobalova R., Dubisova M., Smigova J., Dvorakova S., Korinkova K., Ezrova Z., Endaya B., Blazkova K., Vlcak E., et al. Simultaneous targeting of mitochondrial metabolism and immune checkpoints as a new strategy for renal cancer therapy. Clin. Transl. Med. 2022;12:e645. doi: 10.1002/ctm2.645. PubMed DOI PMC
Bielcikova Z., Stursa J., Krizova L., Dong L., Spacek J., Hlousek S., Vocka M., Rohlenova K., Bartosova O., Cerny V., et al. Mitochondrially targeted tamoxifen in patients with metastatic solid tumours: An open-label, phase I/Ib single-centre trial. EClinicalMedicine. 2023;57:101873. doi: 10.1016/j.eclinm.2023.101873. PubMed DOI PMC
Neuzil J., Dong L.-F., Rohlena J., Truksa J., Ralph S.J. Classification of mitocans, anti-cancer drugs acting on mitochondria. Mitochondrion. 2012;13:199–208. doi: 10.1016/j.mito.2012.07.112. PubMed DOI
Bajzikova M., Kovarova J., Coelho A.R., Boukalova S., Oh S., Rohlenova K., Svec D., Hubackova S., Endaya B., Judasova K., et al. Reactivation of dihydroorotate dehydrogenase by respiration restores tumor growth of mitochondrial DNA-depleted cancer cells. Cell Metab. 2019;29:399–416. doi: 10.1016/j.cmet.2018.10.014. PubMed DOI PMC
Vasan K., Werner M., Chandel N.S. Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab. 2020;32:341–352. doi: 10.1016/j.cmet.2020.06.019. PubMed DOI PMC