Disordered-to-ordered transitions in assembly factors allow the complex II catalytic subunit to switch binding partners
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IK6 BX004215
BLRD VA - United States
R01 GM061606
NIGMS NIH HHS - United States
R35 GM118089
NIGMS NIH HHS - United States
S10 RR025677
NCRR NIH HHS - United States
PubMed
38212624
PubMed Central
PMC10784507
DOI
10.1038/s41467-023-44563-7
PII: 10.1038/s41467-023-44563-7
Knihovny.cz E-zdroje
- MeSH
- katalytická doména * MeSH
- sekundární struktura proteinů MeSH
- Publikační typ
- časopisecké články MeSH
Complex II (CII) activity controls phenomena that require crosstalk between metabolism and signaling, including neurodegeneration, cancer metabolism, immune activation, and ischemia-reperfusion injury. CII activity can be regulated at the level of assembly, a process that leverages metastable assembly intermediates. The nature of these intermediates and how CII subunits transfer between metastable complexes remains unclear. In this work, we identify metastable species containing the SDHA subunit and its assembly factors, and we assign a preferred temporal sequence of appearance of these species during CII assembly. Structures of two species show that the assembly factors undergo disordered-to-ordered transitions without the appearance of significant secondary structure. The findings identify that intrinsically disordered regions are critical in regulating CII assembly, an observation that has implications for the control of assembly in other biomolecular complexes.
1st Faculty of Medicine Charles University 128 00 Prague 2 Czech Republic
Center for Structural Biology Vanderbilt University Nashville TN 37232 USA
Department of Biochemistry and Biophysics University of California San Francisco CA 94158 USA
Department of Biochemistry Vanderbilt University Nashville TN 37232 USA
Department of Chemistry Vanderbilt University Nashville TN 37232 USA
Department of Pharmacology Vanderbilt University Nashville TN 37232 USA
Faculty of Science Charles University 128 00 Prague 2 Czech Republic
Institute of Biotechnology Czech Academy of Sciences 252 50 Prague West Czech Republic
Institute of Physiology Czech Academy of Sciences Prague 4 142 20 Prague Czech Republic
Molecular Biology Division San Francisco VA Health Care System San Francisco CA 94121 USA
School of Pharmacy and Medical Science Griffith University Southport QLD 4222 Australia
Vanderbilt Institute of Chemical Biology Vanderbilt University Nashville TN 37232 USA
Zobrazit více v PubMed
Ryan DG, et al. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat. Metab. 2019;1:16–33. doi: 10.1038/s42255-018-0014-7. PubMed DOI PMC
Murphy MP, O’Neill LAJ. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell. 2018;174:780–784. doi: 10.1016/j.cell.2018.07.030. PubMed DOI
Murphy MP, Chouchani ET. Why succinate? Physiological regulation by a mitochondrial coenzyme Q sentinel. Nat. Chem. Biol. 2022;18:461–469. doi: 10.1038/s41589-022-01004-8. PubMed DOI PMC
Iverson TM, Maklashina E, Cecchini G. Structural basis for malfunction in complex II. J. Biol. Chem. 2012;287:35430–35438. doi: 10.1074/jbc.R112.408419. PubMed DOI PMC
Iverson TM, Singh PK, Cecchini G. An evolving view of complex II-noncanonical complexes, megacomplexes, respiration, signaling, and beyond. J. Biol. Chem. 2023;299:104761. doi: 10.1016/j.jbc.2023.104761. PubMed DOI PMC
Gottlieb E, Tomlinson IP. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat. Rev. Cancer. 2005;5:857–866. doi: 10.1038/nrc1737. PubMed DOI
Gupta P, et al. Genetic impairment of succinate metabolism disrupts bioenergetic sensing in adrenal neuroendocrine cancer. Cell Rep. 2022;40:111218. doi: 10.1016/j.celrep.2022.111218. PubMed DOI PMC
Vinogradov AD, Winter D, King TE. The binding site for oxaloacetate on succinate dehydrogenase. Biochem. Biophys. Res. Commun. 1972;49:441–444. doi: 10.1016/0006-291X(72)90430-5. PubMed DOI
Priegnitz A, Brzhevs.kaya ON, Wojtczak L. Tight binding of oxaloacetate to succinate dehydrogenase. Biochem. Biophys. Res. Commun. 1973;51:1034–1041. doi: 10.1016/0006-291X(73)90031-4. PubMed DOI
Gutman M, Silman N. The steady state activity of succinate dehydrogenase in the presence of opposing effectors.II. Reductive activation of succinate dehydrogenase in presence of oxaloacetate. Mol. Cell Biochem. 1975;7:177–185. doi: 10.1007/BF01731407. PubMed DOI
Huang LS, et al. 3-nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. J. Biol. Chem. 2006;281:5965–5972. doi: 10.1074/jbc.M511270200. PubMed DOI PMC
Beal MF, et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 1993;13:4181–4192. doi: 10.1523/JNEUROSCI.13-10-04181.1993. PubMed DOI PMC
Renkema GH, et al. SDHA mutations causing a multisystem mitochondrial disease: novel mutations and genetic overlap with hereditary tumors. Eur. J. Hum. Genet. 2015;23:202–209. doi: 10.1038/ejhg.2014.80. PubMed DOI PMC
Birch-Machin MA, Taylor RW, Cochran B, Ackrell BA, Turnbull DM. Late-onset optic atrophy, ataxia, and myopathy associated with a mutation of a complex II gene. Ann. Neurol. 2000;48:330–335. doi: 10.1002/1531-8249(200009)48:3<330::AID-ANA7>3.0.CO;2-A. PubMed DOI
Burnichon N, et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum. Mol. Genet. 2010;19:3011–3020. doi: 10.1093/hmg/ddq206. PubMed DOI PMC
Sharma P, Maklashina E, Cecchini G, Iverson TM. Maturation of the respiratory complex II flavoprotein. Curr. Opin. Struct. Biol. 2019;59:38–46. doi: 10.1016/j.sbi.2019.01.027. PubMed DOI PMC
Moosavi B, Berry EA, Zhu XL, Yang WC, Yang GF. The assembly of succinate dehydrogenase: a key enzyme in bioenergetics. Cell Mol. Life Sci. 2019;76:4023–4042. doi: 10.1007/s00018-019-03200-7. PubMed DOI PMC
Van Vranken JG, Na U, Winge DR, Rutter J. Protein-mediated assembly of succinate dehydrogenase and its cofactors. Crit. Rev. Biochem. Mol. Biol. 2015;50:168–180. doi: 10.3109/10409238.2014.990556. PubMed DOI PMC
Cecchini G. Function and structure of complex II of the respiratory chain. Annu. Rev. Biochem. 2003;72:77–109. doi: 10.1146/annurev.biochem.72.121801.161700. PubMed DOI
Bezawork-Geleta A, et al. Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints. Nat. Commun. 2018;9:2221. doi: 10.1038/s41467-018-04603-z. PubMed DOI PMC
Reynolds MB, et al. Cardiolipin coordinates inflammatory metabolic reprogramming through regulation of Complex II disassembly and degradation. Sci. Adv. 2023;9:eade8701. doi: 10.1126/sciadv.ade8701. PubMed DOI PMC
Chouchani ET, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515:431–435. doi: 10.1038/nature13909. PubMed DOI PMC
Lemarie A, Huc L, Pazarentzos E, Mahul-Mellier AL, Grimm S. Specific disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction. Cell Death Differ. 2011;18:338–349. doi: 10.1038/cdd.2010.93. PubMed DOI PMC
Pfleger J, He M, Abdellatif M. Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival. Cell Death Dis. 2015;6:e1835. doi: 10.1038/cddis.2015.202. PubMed DOI PMC
Ghezzi D, et al. SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat. Genet. 2009;41:654–656. doi: 10.1038/ng.378. PubMed DOI
Hao HX, et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science. 2009;325:1139–1142. doi: 10.1126/science.1175689. PubMed DOI PMC
Na U, et al. The LYR factors SDHAF1 and SDHAF3 mediate maturation of the iron-sulfur subunit of succinate dehydrogenase. Cell Metab. 2014;20:253–266. doi: 10.1016/j.cmet.2014.05.014. PubMed DOI PMC
Van Vranken JG, et al. SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration. Cell Metab. 2014;20:241–252. doi: 10.1016/j.cmet.2014.05.012. PubMed DOI PMC
Bezawork-Geleta A, Rohlena J, Dong L, Pacak K, Neuzil J. Mitochondrial complex II: at the crossroads. Trends Biochem. Sci. 2017;42:312–325. doi: 10.1016/j.tibs.2017.01.003. PubMed DOI PMC
Wang X, et al. Hepatic suppression of mitochondrial complex II assembly drives systemic metabolic benefits. Adv. Sci. (Weinh) 2022;9:e2105587. doi: 10.1002/advs.202105587. PubMed DOI PMC
Kudryavtseva AV, et al. Mutation profiling in eight cases of vagal paragangliomas. BMC Med. Genomics. 2020;13:115. doi: 10.1186/s12920-020-00763-4. PubMed DOI PMC
Sharma P, Maklashina E, Cecchini G, Iverson TM. The roles of SDHAF2 and dicarboxylate in covalent flavinylation of SDHA, the human complex II flavoprotein. Proc. Natl. Acad. Sci. USA. 2020;117:23548–23556. doi: 10.1073/pnas.2007391117. PubMed DOI PMC
Maklashina E, Iverson TM, Cecchini G. How an assembly factor enhances covalent FAD attachment to the flavoprotein subunit of complex II. J. Biol. Chem. 2022;298:102472. doi: 10.1016/j.jbc.2022.102472. PubMed DOI PMC
Belt K, Van Aken O, Murcha M, Millar AH, Huang S. An assembly factor promotes assembly of flavinated SDH1 into the succinate dehydrogenase complex. Plant Physiol. 2018;177:1439–1452. doi: 10.1104/pp.18.00320. PubMed DOI PMC
Wang X, et al. Cardiac disruption of SDHAF4-mediated mitochondrial complex II assembly promotes dilated cardiomyopathy. Nat. Commun. 2022;13:3947. doi: 10.1038/s41467-022-31548-1. PubMed DOI PMC
Ghayee HK, et al. Progenitor cell line (hPheo1) derived from a human pheochromocytoma tumor. PLoS One. 2013;8:e65624. doi: 10.1371/journal.pone.0065624. PubMed DOI PMC
Maklashina E, Rajagukguk S, Iverson TM, Cecchini G. The unassembled flavoprotein subunits of human and bacterial complex II have impaired catalytic activity and generate only minor amounts of ROS. J. Biol. Chem. 2018;293:7754–7765. doi: 10.1074/jbc.RA118.001977. PubMed DOI PMC
Eletsky A, et al. Solution NMR structure of yeast succinate dehydrogenase flavinylation factor Sdh5 reveals a putative Sdh1 binding site. Biochemistry. 2012;51:8475–8477. doi: 10.1021/bi301171u. PubMed DOI PMC
Cecchini G. Respiratory complex II: role in cellular physiology and disease. Biochim. Biophys. Acta. 2013;1827:541–542. doi: 10.1016/j.bbabio.2013.02.010. PubMed DOI
Spinelli JB, et al. Fumarate is a terminal electron acceptor in the mammalian electron transport chain. Science. 2021;374:1227–1237. doi: 10.1126/science.abi7495. PubMed DOI PMC
Kumar R, et al. A redox cycle with complex II prioritizes sulfide quinone oxidoreductase-dependent H2S oxidation. J. Biol. Chem. 2022;298:101435. doi: 10.1016/j.jbc.2021.101435. PubMed DOI PMC
Grimm C, et al. Structural basis of assembly chaperone- mediated snRNP formation. Mol. Cell. 2013;49:692–703. doi: 10.1016/j.molcel.2012.12.009. PubMed DOI
Furst J, et al. ICln159 folds into a pleckstrin homology domain-like structure. Interaction with kinases and the splicing factor LSm4. J. Biol. Chem. 2005;280:31276–31282. doi: 10.1074/jbc.M500541200. PubMed DOI
Abajian C, Yatsunyk LA, Ramirez BE, Rosenzweig AC. Yeast cox17 solution structure and Copper(I) binding. J. Biol. Chem. 2004;279:53584–53592. doi: 10.1074/jbc.M408099200. PubMed DOI
Banci L, et al. A hint for the function of human Sco1 from different structures. Proc. Natl Acad. Sci. USA. 2006;103:8595–8600. doi: 10.1073/pnas.0601375103. PubMed DOI PMC
Zhan X, Gimenez LE, Gurevich VV, Spiller BW. Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes. J. Mol. Biol. 2011;406:467–478. doi: 10.1016/j.jmb.2010.12.034. PubMed DOI PMC
Chen Q, et al. Structural basis of arrestin-3 activation and signaling. Nat. Commun. 2017;8:1427. doi: 10.1038/s41467-017-01218-8. PubMed DOI PMC
Huang W, et al. Structure of the neurotensin receptor 1 in complex with beta-arrestin 1. Nature. 2020;579:303–308. doi: 10.1038/s41586-020-1953-1. PubMed DOI PMC
Staus DP, et al. Structure of the M2 muscarinic receptor-beta-arrestin complex in a lipid nanodisc. Nature. 2020;579:297–302. doi: 10.1038/s41586-020-1954-0. PubMed DOI PMC
Chaikeeratisak V, et al. Assembly of a nucleus-like structure during viral replication in bacteria. Science. 2017;355:194–197. doi: 10.1126/science.aal2130. PubMed DOI PMC
Mendoza SD, et al. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature. 2020;577:244–248. doi: 10.1038/s41586-019-1786-y. PubMed DOI PMC
Laughlin TG, et al. Architecture and self-assembly of the jumbo bacteriophage nuclear shell. Nature. 2022;608:429–435. doi: 10.1038/s41586-022-05013-4. PubMed DOI PMC
Guo R, Zong S, Wu M, Gu J, Yang M. Architecture of human mitochondrial respiratory megacomplex I(2)III(2)IV(2) Cell. 2017;170:1247–1257.e1212. doi: 10.1016/j.cell.2017.07.050. PubMed DOI
Lemak, A. et al. NMR solution structure of protein ATU1810 from Agrobacterium tumefaciens. Northeast Structural Genomics Consortium target AtR23, Ontario Centre for Structural Proteomics Target ATC1776. Northeast Structural Genomics Consortium (NESG), Ontario Centre for Structural Proteomics (OCSP), 10.2210/pdb2JYA/pdb (2007).
Swapna, G. V. T. et al. Solution NMR Structure of Q5LLS5 from Silicibacter Pomeroy. Northeast Structural Genomics Consortium target SiR90. Northeast Structural Genomics Consortium (NESG), 10.2210/pdb2JRR/pdb (207).
Baradaran R, Berrisford JM, Minhas GS, Sazanov LA. Crystal structure of the entire respiratory complex I. Nature. 2013;494:443–448. doi: 10.1038/nature11871. PubMed DOI PMC
Tan S, Kern RC, Selleck W. The pST44 polycistronic expression system for producing protein complexes in Escherichia coli. Protein Expr. Purif. 2005;40:385–395. doi: 10.1016/j.pep.2004.12.002. PubMed DOI
Zetsche B, et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 2017;35:31–34. doi: 10.1038/nbt.3737. PubMed DOI PMC
Bajzikova M, et al. Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab. 2019;29:399–416.e310. doi: 10.1016/j.cmet.2018.10.014. PubMed DOI PMC
Rohlenova K, et al. Selective disruption of respiratory supercomplexes as a new strategy to suppress Her2(high) breast cancer. Antioxid. Redox. Signal. 2017;26:84–103. doi: 10.1089/ars.2016.6677. PubMed DOI PMC
Boukalova S, et al. Mitochondrial targeting of metformin enhances its activity against pancreatic cancer. Mol. Cancer Ther. 2016;15:2875–2886. doi: 10.1158/1535-7163.MCT-15-1021. PubMed DOI
Pantoja-Uceda D, Santoro J. Direct correlation of consecutive C’-N groups in proteins: a method for the assignment of intrinsically disordered proteins. J. Biomol. NMR. 2013;57:57–63. doi: 10.1007/s10858-013-9765-3. PubMed DOI
Sattler M, Schleucher J, Griesinger C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Mag. Res. Spectrosc. 1999;34:93–158. doi: 10.1016/S0079-6565(98)00025-9. DOI
Voehler M, Ashoka MA, Meiler J, Bock PE. Carbon and amide detect backbone assignment methods of a novel repeat protein from the staphylocoagulase in S-aureus. Biomol. Nmr Assign. 2017;11:243–249. doi: 10.1007/s12104-017-9757-4. PubMed DOI PMC
Borcherds WM, Daughdrill GW. Using NMR chemical shifts to determine residue-specific secondary structure populations for intrinsically disordered proteins. Methods Enzymol. 2018;611:101–136. doi: 10.1016/bs.mie.2018.09.011. PubMed DOI PMC
Nielsen JT, Mulder FAA. CheSPI: chemical shift secondary structure population inference. J. Biomol. NMR. 2021;75:273–291. doi: 10.1007/s10858-021-00374-w. PubMed DOI
Kjaergaard M, Poulsen FM. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution. J. Biomol. NMR. 2011;50:157–165. doi: 10.1007/s10858-011-9508-2. PubMed DOI
Nielsen JT, Mulder FAA. POTENCI: prediction of temperature, neighbor and pH-corrected chemical shifts for intrinsically disordered proteins. J. Biomol. NMR. 2018;70:141–165. doi: 10.1007/s10858-018-0166-5. PubMed DOI
Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276:307–326. doi: 10.1016/S0076-6879(97)76066-X. PubMed DOI
McCoy AJ, et al. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. PubMed DOI PMC
Adams PD, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Zhou Q, et al. Thiabendazole inhibits ubiquinone reduction activity of mitochondrial respiratory complex II via a water molecule mediated binding feature. Protein Cell. 2011;2:531–542. doi: 10.1007/s13238-011-1079-1. PubMed DOI PMC
Taylor RW, et al. Deficiency of complex II of the mitochondrial respiratory chain in late-onset optic atrophy and ataxia. Ann. Neurol. 1996;39:224–232. doi: 10.1002/ana.410390212. PubMed DOI
Blaut M, et al. Fumarate reductase mutants of Escherichia coli that lack covalently bound flavin. J. Biol. Chem. 1989;264:13599–13604. doi: 10.1016/S0021-9258(18)80039-4. PubMed DOI
Sun F, et al. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell. 2005;121:1043–1057. doi: 10.1016/j.cell.2005.05.025. PubMed DOI