Characterizing OXPHOS inhibitor-mediated alleviation of hypoxia using high-throughput live cell-imaging

. 2024 May 03 ; 12 (1) : 13. [epub] 20240503

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38702787

Grantová podpora
13741 KWF Kankerbestrijding
13741 KWF Kankerbestrijding
13741 KWF Kankerbestrijding
13741 KWF Kankerbestrijding
13741 KWF Kankerbestrijding

Odkazy

PubMed 38702787
PubMed Central PMC11067257
DOI 10.1186/s40170-024-00342-6
PII: 10.1186/s40170-024-00342-6
Knihovny.cz E-zdroje

BACKGROUND: Hypoxia is a common feature of many solid tumors and causes radiotherapy and immunotherapy resistance. Pharmacological inhibition of oxidative phosphorylation (OXPHOS) has emerged as a therapeutic strategy to reduce hypoxia. However, the OXPHOS inhibitors tested in clinical trials caused only moderate responses in hypoxia alleviation or trials were terminated due to dose-limiting toxicities. To improve the therapeutic benefit, FDA approved OXPHOS inhibitors (e.g. atovaquone) were conjugated to triphenylphosphonium (TPP+) to preferentially target cancer cell's mitochondria. In this study, we evaluated the hypoxia reducing effects of several mitochondria-targeted OXPHOS inhibitors and compared them to non-mitochondria-targeted OXPHOS inhibitors using newly developed spheroid models for diffusion-limited hypoxia. METHODS: B16OVA murine melanoma cells and MC38 murine colon cancer cells expressing a HIF-Responsive Element (HRE)-induced Green Fluorescent Protein (GFP) with an oxygen-dependent degradation domain (HRE-eGFP-ODD) were generated to assess diffusion-limited hypoxia dynamics in spheroids. Spheroids were treated with IACS-010759, atovaquone, metformin, tamoxifen or with mitochondria-targeted atovaquone (Mito-ATO), PEGylated mitochondria-targeted atovaquone (Mito-PEG-ATO) or mitochondria-targeted tamoxifen (MitoTam). Hypoxia dynamics were followed and quantified over time using the IncuCyte Zoom Live Cell-Imaging system. RESULTS: Hypoxic cores developed in B16OVA.HRE and MC38.HRE spheroids within 24 h hours after seeding. Treatment with IACS-010759, metformin, atovaquone, Mito-PEG-ATO and MitoTam showed a dose-dependent reduction of hypoxia in both B16OVA.HRE and MC38.HRE spheroids. Mito-ATO only alleviated hypoxia in MC38.HRE spheroids while tamoxifen was not able to reduce hypoxia in any of the spheroid models. The mitochondria-targeted OXPHOS inhibitors demonstrated stronger anti-hypoxic effects compared to the non-mito-targeted OXPHOS inhibitors. CONCLUSIONS: We successfully developed a high-throughput spheroid model in which hypoxia dynamics can be quantified over time. Using this model, we showed that the mitochondria-targeted OXPHOS inhibitors Mito-ATO, Mito-PEG-ATO and MitoTam reduce hypoxia in tumor cells in a dose-dependent manner, potentially sensitizing hypoxic tumor cells for radiotherapy.

Zobrazit více v PubMed

Span PN, Bussink J. Biology of hypoxia. Semin Nucl Med. 2015;45(2):101–9. doi: 10.1053/j.semnuclmed.2014.10.002. PubMed DOI

Secomb TW, Hsu R, Ong ET, Gross JF, Dewhirst MW. Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors. Acta Oncol. 1995;34(3):313–6. doi: 10.3109/02841869509093981. PubMed DOI

Brown JM. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br J Radiol. 1979;52(620):650–6. doi: 10.1259/0007-1285-52-620-650. PubMed DOI

Boreel DF, Span PN, Heskamp S, Adema GJ, Bussink J. Targeting oxidative phosphorylation to increase the efficacy of radio- and Immune-Combination Therapy. Clin Cancer Res. 2021;27(11):2970–8. doi: 10.1158/1078-0432.CCR-20-3913. PubMed DOI

Rademakers SE, Span PN, Kaanders JH, Sweep FC, van der Kogel AJ, Bussink J. Molecular aspects of tumour hypoxia. Mol Oncol. 2008;2(1):41–53. doi: 10.1016/j.molonc.2008.03.006. PubMed DOI PMC

Najjar YG, Menk AV, Sander C, Rao U, Karunamurthy A, Bhatia R et al. Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma. Jci Insight. 2019;4(5). PubMed PMC

Joiner MC, van der Kogel AJ. Basic clinical radiobiology. 5. Boca Raton, FL: CRC; 2018.

Grimes DR, Partridge M. A mechanistic investigation of the oxygen fixation hypothesis and oxygen enhancement ratio. Biomed Phys Eng Express. 2015;1(4):045209. doi: 10.1088/2057-1976/1/4/045209. PubMed DOI PMC

Coates JT, Skwarski M, Higgins GS. Targeting tumour hypoxia: shifting focus from oxygen supply to demand. Br J Radiol. 2019;92(1093):20170843. doi: 10.1259/bjr.20170843. PubMed DOI PMC

Gaipl US, Multhoff G, Scheithauer H, Lauber K, Hehlgans S, Frey B, et al. Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy. 2014;6(5):597–610. doi: 10.2217/imt.14.38. PubMed DOI

Ashton TM, Fokas E, Kunz-Schughart LA, Folkes LK, Anbalagan S, Huether M, et al. The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia. Nat Commun. 2016;7:12308. doi: 10.1038/ncomms12308. PubMed DOI PMC

Han KTY, Fyles A, Shek T, Croke J, Dhani N, D’Souza D, et al. A phase II randomized trial of Chemoradiation with or without metformin in locally Advanced Cervical Cancer. Clin Cancer Res. 2022;28(24):5263–71. doi: 10.1158/1078-0432.CCR-22-1665. PubMed DOI

Skwarski M, McGowan DR, Belcher E, Di Chiara F, Stavroulias D, McCole M, et al. Mitochondrial inhibitor atovaquone increases Tumor Oxygenation and inhibits hypoxic gene expression in patients with Non-small Cell Lung Cancer. Clin Cancer Res. 2021;27(9):2459–69. doi: 10.1158/1078-0432.CCR-20-4128. PubMed DOI PMC

Yap TA, Daver N, Mahendra M, Zhang J, Kamiya-Matsuoka C, Meric-Bernstam F, et al. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. Nat Med. 2023;29(1):115–26. doi: 10.1038/s41591-022-02103-8. PubMed DOI PMC

Janku F, LoRusso P, Mansfield AS, Nanda R, Spira A, Wang T, et al. First-in-human evaluation of the novel mitochondrial complex I inhibitor ASP4132 for treatment of cancer. Invest New Drugs. 2021;39(5):1348–56. doi: 10.1007/s10637-021-01112-7. PubMed DOI

Cheng G, Hardy M, Topchyan P, Zander R, Volberding P, Cui W, et al. Potent inhibition of tumour cell proliferation and immunoregulatory function by mitochondria-targeted atovaquone. Sci Rep. 2020;10(1):17872. doi: 10.1038/s41598-020-74808-0. PubMed DOI PMC

Cheng G, Zielonka J, Ouari O, Lopez M, McAllister D, Boyle K, et al. Mitochondria-Targeted Analogues of metformin exhibit enhanced Antiproliferative and Radiosensitizing effects in Pancreatic Cancer cells. Cancer Res. 2016;76(13):3904–15. doi: 10.1158/0008-5472.CAN-15-2534. PubMed DOI PMC

Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, et al. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of Action, and therapeutic and diagnostic applications. Chem Rev. 2017;117(15):10043–120. doi: 10.1021/acs.chemrev.7b00042. PubMed DOI PMC

Summerhayes IC, Lampidis TJ, Bernal SD, Nadakavukaren JJ, Nadakavukaren KK, Shepherd EL, et al. Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells. Proc Natl Acad Sci U S A. 1982;79(17):5292–6. doi: 10.1073/pnas.79.17.5292. PubMed DOI PMC

Modica-Napolitano JS, Aprille JR. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev. 2001;49(1–2):63–70. doi: 10.1016/S0169-409X(01)00125-9. PubMed DOI

Cheng G, Hardy M, You M, Kalyanaraman B. Combining PEGylated mito-atovaquone with MCT and Krebs cycle redox inhibitors as a potential strategy to abrogate tumor cell proliferation. Sci Rep-Uk. 2022;12(1). PubMed PMC

Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10(21):1451–8. doi: 10.1016/S1359-6446(05)03575-0. PubMed DOI

Busk M, Overgaard J, Horsman MR. Imaging of Tumor Hypoxia for Radiotherapy: current status and future directions. Semin Nucl Med. 2020;50(6):562–83. doi: 10.1053/j.semnuclmed.2020.05.003. PubMed DOI

Rademakers SE, Lok J, van der Kogel AJ, Bussink J, Kaanders JH. Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1alpha, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer. 2011;11:167. doi: 10.1186/1471-2407-11-167. PubMed DOI PMC

Burr SP, Costa AS, Grice GL, Timms RT, Lobb IT, Freisinger P, et al. Mitochondrial protein lipoylation and the 2-Oxoglutarate dehydrogenase Complex Controls HIF1alpha Stability in Aerobic conditions. Cell Metab. 2016;24(5):740–52. doi: 10.1016/j.cmet.2016.09.015. PubMed DOI PMC

Falo LD, Jr, Kovacsovics-Bankowski M, Thompson K, Rock KL. Targeting antigen into the phagocytic pathway in vivo induces protective tumour immunity. Nat Med. 1995;1(7):649–53. doi: 10.1038/nm0795-649. PubMed DOI

Rohlenova K, Sachaphibulkij K, Stursa J, Bezawork-Geleta A, Blecha J, Endaya B, et al. Selective disruption of respiratory supercomplexes as a New Strategy to suppress Her2(high) breast Cancer. Antioxid Redox Sign. 2017;26(2):84–103. doi: 10.1089/ars.2016.6677. PubMed DOI PMC

Bielcikova Z, Stursa J, Krizova L, Dong L, Spacek J, Hlousek S, et al. Mitochondrially targeted tamoxifen in patients with metastatic solid tumours: an open-label, phase I/Ib single-centre trial. EClinicalMedicine. 2023;57:101873. doi: 10.1016/j.eclinm.2023.101873. PubMed DOI PMC

Nagelkerke A, Bussink J, Sweep FCGJ, Span PN. Generation of multicellular tumor spheroids of breast cancer cells: how to go three-dimensional. Anal Biochem. 2013;437(1):17–9. doi: 10.1016/j.ab.2013.02.004. PubMed DOI

Newton JM, Hanoteau A, Liu HC, Gaspero A, Parikh F, Gartrell-Corrado RD, et al. Immune microenvironment modulation unmasks therapeutic benefit of radiotherapy and checkpoint inhibition. J Immunother Cancer. 2019;7(1):216. doi: 10.1186/s40425-019-0698-6. PubMed DOI PMC

Henk JM, Kunkler PB, Smith CW. Radiotherapy and hyperbaric oxygen in head and neck cancer. Final report of first controlled clinical trial. Lancet. 1977;2(8029):101–3. doi: 10.1016/S0140-6736(77)90116-7. PubMed DOI

Janssens GO, Rademakers SE, Terhaard CH, Doornaert PA, Bijl HP, van den Ende P, et al. Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: results of a phase III randomized trial. J Clin Oncol. 2012;30(15):1777–83. doi: 10.1200/JCO.2011.35.9315. PubMed DOI

Boreel DF, Beerkens APM, Heskamp S, Boswinkel M, Peters JPW, Adema GJ, et al. Inhibition of OXPHOS reduces tumor hypoxia and induces metabolic rewiring in murine tumor models. Manuscript under consideration. 2024. PubMed PMC

Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, Bristow C, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med. 2018;24(7):1036–46. doi: 10.1038/s41591-018-0052-4. PubMed DOI

Gammon ST, Pisaneschi F, Bandi ML, Smith MG, Sun Y, Rao Y et al. Mechanism-specific pharmacodynamics of a Novel Complex-I inhibitor quantified by imaging reversal of consumptive hypoxia with [(18)F]FAZA PET in vivo. Cells. 2019;8(12). PubMed PMC

Sun Y, Bandi M, Lofton T, Smith M, Bristow CA, Carugo A, et al. Functional Genomics reveals synthetic lethality between Phosphogluconate dehydrogenase and oxidative phosphorylation. Cell Rep. 2019;26(2):469. doi: 10.1016/j.celrep.2018.12.043. PubMed DOI

Benej M, Hong X, Vibhute S, Scott S, Wu J, Graves E, et al. Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proc Natl Acad Sci U S A. 2018;115(42):10756–61. doi: 10.1073/pnas.1808945115. PubMed DOI PMC

Benej M, Wu J, Kreamer M, Kery M, Corrales-Guerrero S, Papandreou I et al. Pharmacological regulation of Tumor Hypoxia in Model Murine tumors and spontaneous canine tumors. Cancers (Basel). 2021;13(7). PubMed PMC

Nadanaciva S, Bernal A, Aggeler R, Capaldi R, Will Y. Target identification of drug induced mitochondrial toxicity using immunocapture based OXPHOS activity assays. Toxicol Vitro. 2007;21(5):902–11. doi: 10.1016/j.tiv.2007.01.011. PubMed DOI

Unten Y, Murai M, Koshitaka T, Kitao K, Shirai O, Masuya T et al. Comprehensive understanding of multiple actions of anticancer drug tamoxifen in isolated mitochondria. Bba-Bioenergetics. 2022;1863(2). PubMed

Naumann FV, Sweep FCGJ, Adema GJ, Peeters WJM, Martens JWM, Bussink J et al. Tamoxifen induces radioresistance through NRF2-mediated metabolic reprogramming in breast cancer. Cancer Metab. 2023;11(1). PubMed PMC

Li QY, Huang Y. Mitochondrial targeted strategies and their application for cancer and other diseases treatment. J Pharm Invest. 2020;50(3):271–93. doi: 10.1007/s40005-020-00481-0. DOI

Fiorillo M, Lamb R, Tanowitz HB, Mutti L, Krstic-Demonacos M, Cappello AR, et al. Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget. 2016;7(23):34084–99. doi: 10.18632/oncotarget.9122. PubMed DOI PMC

d’Hose D, Mathieu B, Mignion L, Hardy M, Ouari O, Jordan BF et al. EPR investigations to study the impact of Mito-Metformin on the mitochondrial function of prostate Cancer cells. Molecules. 2022;27(18). PubMed PMC

Huang M, Xiong D, Pan J, Zhang Q, Wang Y, Myers CR, et al. Prevention of Tumor Growth and dissemination by in situ vaccination with Mitochondria-Targeted Atovaquone. Adv Sci (Weinh) 2022;9(12):e2101267. doi: 10.1002/advs.202101267. PubMed DOI PMC

Garay RP, El-Gewely R, Armstrong JK, Garratty G, Richette P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Deliv. 2012;9(11):1319–23. doi: 10.1517/17425247.2012.720969. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...