Evolution of flexible biting in hyperdiverse parasitoid wasps

. 2022 Jan 26 ; 289 (1967) : 20212086. [epub] 20220126

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35078362

One key event in insect evolution was the development of mandibles with two joints, which allowed powerful biting but restricted their movement to a single degree of freedom. These mandibles define the Dicondylia, which constitute over 99% of all extant insect species. It was common doctrine that the dicondylic articulation of chewing mandibles remained unaltered for more than 400 million years. We report highly modified mandibles overcoming the restrictions of a single degree of freedom and hypothesize their major role in insect diversification. These mandibles are defining features of parasitoid chalcid wasps, one of the most species-rich lineages of insects. The shift from powerful chewing to precise cutting likely facilitated adaptations to parasitize hosts hidden in hard substrates, which pose challenges to the emerging wasps. We reveal a crucial step in insect evolution and highlight the importance of comprehensive studies even of putatively well-known systems.

Zobrazit více v PubMed

Grimaldi D, Engel MS. 2005. Evolution of the insects. Cambridge, UK: Cambridge University Press.

Misof B, et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763-767. (10.1126/science.1257570) PubMed DOI

Foottit RG, Adler PH. 2017. Insect biodiversity, second edition. Chichester, England: John Wiley & Sons.

Nel P, Bertrand S, Nel A. 2018. Diversification of insects since the Devonian: a new approach based on morphological disparity of mouthparts. Sci. Rep. 8, 3516. (10.1038/s41598-018-21938-1) PubMed DOI PMC

Krenn HE (ed). 2019. Insect mouthparts. Cham, Switzerland: Springer Nature Switzerland.

Krenn H. 2019. Form and function of insect mouthparts. In Insect mouthparts (ed. Krenn H), pp. 9-46. Cham, Switzerland: Springer Nature Switzerland.

von Lieven A. 2000. The transformation from monocondylous to dicondylous mandibles in the Insecta. Zoologischer Anzeiger. 239, 139-146.

Hennig W. 1953. Kritische Bemerkungen zum phylogenetischen System der Insekten. Beitr. Entomol. 3, 1-85. (10.21248/contrib.entomol.3.Sonderheft.1-85) DOI

Gayubo SF. 2008. Mouthparts of Hexapods. In Encyclopedia of entomology (ed. Capinera JL), pp. 2497-2504. Dordrecht, Germany: Springer.

Blanke A. 2019. The early evolution of biting–chewing performance in Hexapoda. In Insect mouthparts (ed. Krenn H), pp. 175-202. Cham, Switzerland: Springer Nature Switzerland.

Engel MS. 2015. Insect evolution. Curr. Biol. 25, R868-R872. (10.1016/j.cub.2015.07.059) PubMed DOI

Staniczek A. 2000. The mandible of silverfish (Insecta: Zygentoma) and mayflies (Ephemeroptera): its morphology and phylogenetic significance. Zool. Anz. 239, 147-178.

Blanke A, Machida R, Szucsich NU, Wilde F, Misof B. 2015. Mandibles with two joints evolved much earlier in the history of insects: dicondyly is a synapomorphy of bristletails, silverfish and winged insects. Syst. Entomol. 40, 357-364. (10.1111/syen.12107) DOI

Simpson SJ, Douglas AE, Chapman RF (eds). 2013. The insects: structure and function. Cambridge, UK: Cambridge University; Press.

Snodgrass RE. 1935. Principles of insect morphology. London/New York, NY: MacGraw-Hill.

Wipfler B, Machida R, Müller B, Beutel RG. 2011. On the head morphology of Grylloblattodea (Insecta) and the systematic position of the order, with a new nomenclature for the head muscles of Dicondylia. Syst. Entomol. 36, 241-266. (10.1111/j.1365-3113.2010.00556.x) DOI

Kristensen NP. 1999. Phylogeny of the endopterygote insects, the most successful lineage of living organisms. Eur. J. Entomol. 96, 237-253.

Vilhelmsen L. 2000. Before the wasp-waist: comparative anatomy and phylogenetic implications of the skeleto-musculature of the thoraco-abdominal boundary region in basal Hymenoptera (Insecta). Zoomorphology 119, 185-221. (10.1007/PL00008493) DOI

Vilhelmsen L, Mikó I, Krogmann L. 2010. Beyond the wasp-waist: structural diversity and phylogenetic significance of the mesosoma in apocritan wasps (Insecta: Hymenoptera). Zool. J. Linn. Soc. 159, 22-194. (10.1111/j.1096-3642.2009.00576.x) DOI

Quicke DLJ. 1997. Parasitic wasps. London, UK: Chapman & Hall Ltd.

Jervis M. 1998. Functional and evolutionary aspects of mouthpart structure in parasitoid wasps. Biol. J. Linnean Soc. 63, 461-493. (10.1111/j.1095-8312.1998.tb00326.x) DOI

Heraty J. 2017. Parasitoid biodiversity and insect pest management. In Insect biodiversity, second edition (eds Foottit RG, Adler PH), pp. 445-462. Chichester, UK: John Wiley & Sons.

Heraty JM, et al. 2013. A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera). Cladistics 29, 466-542. (10.1111/cla.12006) PubMed DOI

Peters RS, et al. 2018. Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. Mol. Phylogenet. Evol. 120, 286-296. (10.1016/j.ympev.2017.12.005) PubMed DOI

Peters RS, et al. 2017. Evolutionary history of the Hymenoptera. Curr. Biol. 27, 1013-1018. (10.1016/j.cub.2017.01.027) PubMed DOI

Beutel RG, Friedrich F, Ge S-Q, Yang X-K. 2014. Insect morphology and phylogeny. Boston, MA: De Gruyter.

Gibson GAP, Heraty JM, Woolley JB. 1999. Phylogenetics and classification of Chalcidoidea and Mymarommatoidea—a review of current concepts (Hymenoptera. Apocrita) . Zool. Scr. 28, 87-124. (10.1046/j.1463-6409.1999.00016.x) DOI

Perrichot V, Wang B, Barden P. 2020. New remarkable hell ants (Formicidae: Haidomyrmecinae stat. nov.) from mid-Cretaceous amber of northern Myanmar. Cretaceous Res. 109, 104381. (10.1016/j.cretres.2020.104381) DOI

Barden P, Perrichot V, Wang B. 2020. Specialized predation drives aberrant morphological integration and diversity in the earliest ants. Curr. Biol. 30, 1-7. (10.1016/j.cub.2020.06.106) PubMed DOI

Cecilia A, et al. 2011. LPE grown LSO:Tb scintillator films for high resolution X-ray imaging applications at synchrotron light sources. Nucl. Instrum. Methods Phys. Res., Sect. A 648(Suppl. 1), 321-323. (10.1016/j.nima.2010.10.150) DOI

Douissard P-A, et al. 2012. A versatile indirect detector design for hard X-ray microimaging. J. Instrum. 7, P09016. (10.1088/1748-0221/7/09/P09016) DOI

Vogelgesang M, Farago T, Morgeneyer TE, Helfen L, dos Santos Rolo T, Myagotin A, Baumbach T. 2016. Real-time image-content-based beamline control for smart 4D X-ray imaging. J. Synchrotron Radiat. 23, 1254-1263. (10.1107/S1600577516010195) PubMed DOI

Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW. 2002. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33-40. (10.1046/j.1365-2818.2002.01010.x) PubMed DOI

Faragó T, Mikulík P, Ershov A, Vogelgesang M, Hänschke D, Baumbach T. 2017. syris: a flexible and efficient framework for X-ray imaging experiments simulation. J. Synchrotron Radiat. 24, 1283-1295. (10.1107/S1600577517012255) PubMed DOI

Vogelgesang M, Chilingaryan S, dos Santos Rolo T, Kopmann A. 2012. UFO: a scalable GPU-based image processing framework for on-line monitoring. In Proc. of HPCC-ICESS, Liverpool, UK, 24--27 June 2012, pp. 824–829. Piscataway, NJ: IEEE. (10.1109/HPCC.2012.116) DOI

Lösel P, et al. 2020. Introducing Biomedisa as an open-source online platform for biomedical image segmentation. Nat. Commun. 11, 5577. (10.1038/s41467-020-19303-w) PubMed DOI PMC

van de Kamp T, et al. 2021. Data from: Evolution of flexible biting in hyperdiverse parasitoid wasps. Dryad Digital Repository. (10.5061/dryad.0rxwdbs1x) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Evolution of flexible biting in hyperdiverse parasitoid wasps

. 2022 Jan 26 ; 289 (1967) : 20212086. [epub] 20220126

Zobrazit více v PubMed

Dryad
10.5061/dryad.0rxwdbs1x

figshare
10.6084/m9.figshare.c.5762457

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...