Evolution of flexible biting in hyperdiverse parasitoid wasps
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35078362
PubMed Central
PMC8790333
DOI
10.1098/rspb.2021.2086
Knihovny.cz E-zdroje
- Klíčová slova
- functional morphology, insect diversification, mandibles,
- MeSH
- fylogeneze MeSH
- fyziologická adaptace MeSH
- interakce hostitele a parazita MeSH
- sršňovití * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
One key event in insect evolution was the development of mandibles with two joints, which allowed powerful biting but restricted their movement to a single degree of freedom. These mandibles define the Dicondylia, which constitute over 99% of all extant insect species. It was common doctrine that the dicondylic articulation of chewing mandibles remained unaltered for more than 400 million years. We report highly modified mandibles overcoming the restrictions of a single degree of freedom and hypothesize their major role in insect diversification. These mandibles are defining features of parasitoid chalcid wasps, one of the most species-rich lineages of insects. The shift from powerful chewing to precise cutting likely facilitated adaptations to parasitize hosts hidden in hard substrates, which pose challenges to the emerging wasps. We reveal a crucial step in insect evolution and highlight the importance of comprehensive studies even of putatively well-known systems.
Department of Animal Taxonomy and Ecology Adam Mickiewicz University in Poznań 61 614 Poznań Poland
Department of Biological Sciences University of New Hampshire Durham NH 03824 USA
Department of Entomology State Museum of Natural History Stuttgart 70191 Stuttgart Germany
Department of Zoology Faculty of Science Charles University 128 43 Prague 2 Czech Republic
Institute for Photon Science and Synchrotron Radiation 76344 Eggenstein Leopoldshafen Germany
Institute of Biology Systematic Entomology University of Hohenheim 70593 Stuttgart Germany
Laboratory for Applications of Synchrotron Radiation 76131 Karlsruhe Germany
Zobrazit více v PubMed
Grimaldi D, Engel MS. 2005. Evolution of the insects. Cambridge, UK: Cambridge University Press.
Misof B, et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763-767. (10.1126/science.1257570) PubMed DOI
Foottit RG, Adler PH. 2017. Insect biodiversity, second edition. Chichester, England: John Wiley & Sons.
Nel P, Bertrand S, Nel A. 2018. Diversification of insects since the Devonian: a new approach based on morphological disparity of mouthparts. Sci. Rep. 8, 3516. (10.1038/s41598-018-21938-1) PubMed DOI PMC
Krenn HE (ed). 2019. Insect mouthparts. Cham, Switzerland: Springer Nature Switzerland.
Krenn H. 2019. Form and function of insect mouthparts. In Insect mouthparts (ed. Krenn H), pp. 9-46. Cham, Switzerland: Springer Nature Switzerland.
von Lieven A. 2000. The transformation from monocondylous to dicondylous mandibles in the Insecta. Zoologischer Anzeiger. 239, 139-146.
Hennig W. 1953. Kritische Bemerkungen zum phylogenetischen System der Insekten. Beitr. Entomol. 3, 1-85. (10.21248/contrib.entomol.3.Sonderheft.1-85) DOI
Gayubo SF. 2008. Mouthparts of Hexapods. In Encyclopedia of entomology (ed. Capinera JL), pp. 2497-2504. Dordrecht, Germany: Springer.
Blanke A. 2019. The early evolution of biting–chewing performance in Hexapoda. In Insect mouthparts (ed. Krenn H), pp. 175-202. Cham, Switzerland: Springer Nature Switzerland.
Engel MS. 2015. Insect evolution. Curr. Biol. 25, R868-R872. (10.1016/j.cub.2015.07.059) PubMed DOI
Staniczek A. 2000. The mandible of silverfish (Insecta: Zygentoma) and mayflies (Ephemeroptera): its morphology and phylogenetic significance. Zool. Anz. 239, 147-178.
Blanke A, Machida R, Szucsich NU, Wilde F, Misof B. 2015. Mandibles with two joints evolved much earlier in the history of insects: dicondyly is a synapomorphy of bristletails, silverfish and winged insects. Syst. Entomol. 40, 357-364. (10.1111/syen.12107) DOI
Simpson SJ, Douglas AE, Chapman RF (eds). 2013. The insects: structure and function. Cambridge, UK: Cambridge University; Press.
Snodgrass RE. 1935. Principles of insect morphology. London/New York, NY: MacGraw-Hill.
Wipfler B, Machida R, Müller B, Beutel RG. 2011. On the head morphology of Grylloblattodea (Insecta) and the systematic position of the order, with a new nomenclature for the head muscles of Dicondylia. Syst. Entomol. 36, 241-266. (10.1111/j.1365-3113.2010.00556.x) DOI
Kristensen NP. 1999. Phylogeny of the endopterygote insects, the most successful lineage of living organisms. Eur. J. Entomol. 96, 237-253.
Vilhelmsen L. 2000. Before the wasp-waist: comparative anatomy and phylogenetic implications of the skeleto-musculature of the thoraco-abdominal boundary region in basal Hymenoptera (Insecta). Zoomorphology 119, 185-221. (10.1007/PL00008493) DOI
Vilhelmsen L, Mikó I, Krogmann L. 2010. Beyond the wasp-waist: structural diversity and phylogenetic significance of the mesosoma in apocritan wasps (Insecta: Hymenoptera). Zool. J. Linn. Soc. 159, 22-194. (10.1111/j.1096-3642.2009.00576.x) DOI
Quicke DLJ. 1997. Parasitic wasps. London, UK: Chapman & Hall Ltd.
Jervis M. 1998. Functional and evolutionary aspects of mouthpart structure in parasitoid wasps. Biol. J. Linnean Soc. 63, 461-493. (10.1111/j.1095-8312.1998.tb00326.x) DOI
Heraty J. 2017. Parasitoid biodiversity and insect pest management. In Insect biodiversity, second edition (eds Foottit RG, Adler PH), pp. 445-462. Chichester, UK: John Wiley & Sons.
Heraty JM, et al. 2013. A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera). Cladistics 29, 466-542. (10.1111/cla.12006) PubMed DOI
Peters RS, et al. 2018. Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. Mol. Phylogenet. Evol. 120, 286-296. (10.1016/j.ympev.2017.12.005) PubMed DOI
Peters RS, et al. 2017. Evolutionary history of the Hymenoptera. Curr. Biol. 27, 1013-1018. (10.1016/j.cub.2017.01.027) PubMed DOI
Beutel RG, Friedrich F, Ge S-Q, Yang X-K. 2014. Insect morphology and phylogeny. Boston, MA: De Gruyter.
Gibson GAP, Heraty JM, Woolley JB. 1999. Phylogenetics and classification of Chalcidoidea and Mymarommatoidea—a review of current concepts (Hymenoptera. Apocrita) . Zool. Scr. 28, 87-124. (10.1046/j.1463-6409.1999.00016.x) DOI
Perrichot V, Wang B, Barden P. 2020. New remarkable hell ants (Formicidae: Haidomyrmecinae stat. nov.) from mid-Cretaceous amber of northern Myanmar. Cretaceous Res. 109, 104381. (10.1016/j.cretres.2020.104381) DOI
Barden P, Perrichot V, Wang B. 2020. Specialized predation drives aberrant morphological integration and diversity in the earliest ants. Curr. Biol. 30, 1-7. (10.1016/j.cub.2020.06.106) PubMed DOI
Cecilia A, et al. 2011. LPE grown LSO:Tb scintillator films for high resolution X-ray imaging applications at synchrotron light sources. Nucl. Instrum. Methods Phys. Res., Sect. A 648(Suppl. 1), 321-323. (10.1016/j.nima.2010.10.150) DOI
Douissard P-A, et al. 2012. A versatile indirect detector design for hard X-ray microimaging. J. Instrum. 7, P09016. (10.1088/1748-0221/7/09/P09016) DOI
Vogelgesang M, Farago T, Morgeneyer TE, Helfen L, dos Santos Rolo T, Myagotin A, Baumbach T. 2016. Real-time image-content-based beamline control for smart 4D X-ray imaging. J. Synchrotron Radiat. 23, 1254-1263. (10.1107/S1600577516010195) PubMed DOI
Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW. 2002. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33-40. (10.1046/j.1365-2818.2002.01010.x) PubMed DOI
Faragó T, Mikulík P, Ershov A, Vogelgesang M, Hänschke D, Baumbach T. 2017. syris: a flexible and efficient framework for X-ray imaging experiments simulation. J. Synchrotron Radiat. 24, 1283-1295. (10.1107/S1600577517012255) PubMed DOI
Vogelgesang M, Chilingaryan S, dos Santos Rolo T, Kopmann A. 2012. UFO: a scalable GPU-based image processing framework for on-line monitoring. In Proc. of HPCC-ICESS, Liverpool, UK, 24--27 June 2012, pp. 824–829. Piscataway, NJ: IEEE. (10.1109/HPCC.2012.116) DOI
Lösel P, et al. 2020. Introducing Biomedisa as an open-source online platform for biomedical image segmentation. Nat. Commun. 11, 5577. (10.1038/s41467-020-19303-w) PubMed DOI PMC
van de Kamp T, et al. 2021. Data from: Evolution of flexible biting in hyperdiverse parasitoid wasps. Dryad Digital Repository. (10.5061/dryad.0rxwdbs1x) PubMed DOI PMC
Evolution of flexible biting in hyperdiverse parasitoid wasps