New Low Morphine Opium Poppy Genotype Obtained by TILLING Approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1810391
Ministry of Agriculture of the Czech republic
GAJU080/2022/Z
University of South Bohemia
PubMed
36903937
PubMed Central
PMC10005565
DOI
10.3390/plants12051077
PII: plants12051077
Knihovny.cz E-zdroje
- Klíčová slova
- TILLING, chemical mutagenesis, expression profiles, morphine content, new breeding methods, opium poppy,
- Publikační typ
- časopisecké články MeSH
The opium poppy's ability to produce various alkaloids is both useful and problematic. Breeding of new varieties with varying alkaloid content is therefore an important task. In this paper, the breeding technology of new low morphine poppy genotypes, based on a combination of a TILLING approach and single-molecule real-time NGS sequencing, is presented. Verification of the mutants in the TILLING population was obtained using RT-PCR and HPLC methods. Only three of the single-copy genes of the morphine pathway among the eleven genes were used for the identification of mutant genotypes. Point mutations were obtained only in one gene (CNMT) while an insertion was obtained in the other (SalAT). Only a few expected transition SNPs from G:C to A:T were obtained. In the low morphine mutant genotype, the production of morphine was decreased to 0.1% from 1.4% in the original variety. A comprehensive description of the breeding process, a basic characterization of the main alkaloid content, and a gene expression profile for the main alkaloid-producing genes is provided. Difficulties with the TILLING approach are also described and discussed.
Zobrazit více v PubMed
Verma N., Jena S.N., Shukla S., Yadav K. Genetic Diversity, Population Structure and Marker Trait Associations for Alkaloid Content and Licit Opium Yield in India-Wide Collection of Poppy (Papaver somniferum L.) Plant Gene. 2016;7:26–41. doi: 10.1016/j.plgene.2016.08.001. DOI
Labanca F., Ovesnà J., Milella L. Papaver somniferum L. Taxonomy, Uses and New Insight in Poppy Alkaloid Pathways. Phytochem. Rev. 2018;17:853–871. doi: 10.1007/s11101-018-9563-3. DOI
Lal R.K., Chanotiya C.S., Gupta P. Induced Mutation Breeding for Qualitative and Quantitative Traits and Varietal Development in Medicinal and Aromatic Crops at CSIR-CIMAP, Lucknow (India): Past and Recent Accomplishment. Int. J. Radiat. Biol. 2020;96:1513–1527. doi: 10.1080/09553002.2020.1834161. PubMed DOI
Gümüşçü A., Arslan N., Sarıhan E.O. Evaluation of Selected Poppy (Papaver somniferum L.) Lines by Their Morphine and Other Alkaloids Contents. Eur. Food Res. Technol. 2008;226:1213–1220. doi: 10.1007/s00217-007-0739-0. DOI
Beaudoin G.A.W., Facchini P.J. Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy. Planta. 2014;240:19–32. doi: 10.1007/s00425-014-2056-8. PubMed DOI
Singh A., Menéndez-Perdomo I.M., Facchini P.J. Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy: An Update. Phytochem. Rev. 2019;18:1457–1482. doi: 10.1007/s11101-019-09644-w. DOI
Svoboda P., Vašek J., Vejl P., Ovesná J. Genetic Features of Czech Blue Poppy (Papaver somniferum L.) Revealed by DNA Polymorphism. Czech J. Food Sci. 2020;38:198–202. doi: 10.17221/23/2020-CJFS. DOI
Dubey M.K., Shasany A.K., Dhawan O.P., Shukla A.K., Khanuja S.P.S. Lipid Peroxidation and Antioxidant Activities Involved in Resistance Response against Downy Mildew in Opium Poppy. J. Phytopathol. 2010;158:88–92. doi: 10.1111/j.1439-0434.2009.01582.x. DOI
Kundratova K., Bartas M., Pecinka P., Hejna O., Rychla A., Curn V., Cerven J. Transcriptomic and Proteomic Analysis of Drought Stress Response in Opium Poppy Plants during the First Week of Germination. Plants. 2021;10:1878. doi: 10.3390/plants10091878. PubMed DOI PMC
Mahdavi-Damghani A., Kamkar B., Al-Ahmadi M.J., Testi L., Munoz-Ledesma F.J., Villalobos F.J. Water Stress Effects on Growth, Development and Yield of Opium Poppy (Papaver somniferum L.) Agric. Water Manag. 2010;97:1582–1590. doi: 10.1016/j.agwat.2010.05.011. DOI
Pinke G., Toth K., Kovacs A.J., Milics G., Varga Z., Blazsek K., Gal K.E., Botta-Dukat Z. Use of Mesotrione and Tembotrione Herbicides for Post-Emergence Weed Control in Alkaloid Poppy (Papaver somniferum) Int. J. Pest Manag. 2014;60:187–195. doi: 10.1080/09670874.2014.953622. DOI
Hu Y., Zhao R., Xu P., Jiao Y. The Genome of Opium Poppy Reveals Evolutionary History of Morphinan Pathway. Genom. Proteom. Bioinform. 2018;16:460–462. doi: 10.1016/j.gpb.2018.09.002. PubMed DOI PMC
Li Y., Winzer T., He Z., Graham I.A. Over 100 Million Years of Enzyme Evolution Underpinning the Production of Morphine in the Papaveraceae Family of Flowering Plants. Plant Commun. 2020;1:100029. doi: 10.1016/j.xplc.2020.100029. PubMed DOI PMC
Guo L., Winzer T., Yang X., Li Y., Ning Z., He Z., Teodor R., Lu Y., Bowser T.A., Graham I.A., et al. The Opium Poppy Genome and Morphinan Production. Science. 2018;362:343–347. doi: 10.1126/science.aat4096. PubMed DOI
Mishra B.K., Pathak S., Sharma A., Trivedi P.K., Shukla S. Modulated Gene Expression in Newly Synthesized Auto-Tetraploid of Papaver somniferum L. S. Afr. J. Bot. 2010;76:447–452. doi: 10.1016/j.sajb.2010.02.090. DOI
Li Q., Ramasamy S., Singh P., Hagel J.M., Dunemann S.M., Chen X., Chen R., Yu L., Tucker J.E., Facchini P.J., et al. Gene Clustering and Copy Number Variation in Alkaloid Metabolic Pathways of Opium Poppy. Nat. Commun. 2020;11:1190. doi: 10.1038/s41467-020-15040-2. PubMed DOI PMC
Gao C. Genome Engineering for Crop Improvement and Future Agriculture. Cell. 2021;184:1621–1635. doi: 10.1016/j.cell.2021.01.005. PubMed DOI
Uslu T. Advantages, Risks and Legal Perspectives of GMOs in 2020s. Plant Biotechnol. Rep. 2021;15:741–751. doi: 10.1007/s11816-021-00714-0. DOI
Chen L., Hao L., Parry M.A.J., Phillips A.L., Hu Y.-G. Progress in TILLING as a Tool for Functional Genomics and Improvement of Crops. J. Integr. Plant Biol. 2014;56:425–443. doi: 10.1111/jipb.12192. PubMed DOI
Irshad A., Guo H., Zhang S., Liu L. TILLING in Cereal Crops for Allele Expansion and Mutation Detection by Using Modern Sequencing Technologies. Agronomy. 2020;10:405. doi: 10.3390/agronomy10030405. DOI
Rashid M., He G., Guanxiao Y., Khurram Z. Relevance of Tilling in Plant Genomics. Aust. J. Crop Sci. 2011;5:411–420.
Tadele Z. Mutagenesis and TILLING to Dissect Gene Function in Plants. Curr. Genom. 2016;17:499–508. doi: 10.2174/1389202917666160520104158. PubMed DOI PMC
Taheri S., Abdullah T.L., Jain S.M., Sahebi M., Azizi P. TILLING, High-Resolution Melting (HRM), and next-Generation Sequencing (NGS) Techniques in Plant Mutation Breeding. Mol. Breed. 2017;37:40. doi: 10.1007/s11032-017-0643-7. DOI
McCallum C., Comai L., Greene E., Henikoff S. Targeting Induced Local Lesions in Genomes (TILLING) for Plant Functional Genomics. Plant Physiol. 2000;123:439–442. doi: 10.1104/pp.123.2.439. PubMed DOI PMC
Colbert T., Till B., Tompa R., Reynolds S., Steine M., Yeung A., McCallum C., Comai L., Henikoff S. High-Throughput Screening for Induced Point Mutations. Plant Physiol. 2001;126:480–484. doi: 10.1104/pp.126.2.480. PubMed DOI PMC
Tsai H., Howell T., Nitcher R., Missirian V., Watson B., Ngo K.J., Lieberman M., Fass J., Uauy C., Tran R.K., et al. Discovery of Rare Mutations in Populations: TILLING by Sequencing. Plant Physiol. 2011;156:1257–1268. doi: 10.1104/pp.110.169748. PubMed DOI PMC
Slade A., Fuerstenberg S., Loeffler D., Steine M., Facciotti D. A Reverse Genetic, Nontransgenic Approach to Wheat Crop Improvement by TILLING. Nat. Biotechnol. 2005;23:75–81. doi: 10.1038/nbt1043. PubMed DOI
Lakhssassi N., Zhou Z., Liu S., Colantonio V., AbuGhazaleh A., Meksem K. Characterization of the FAD2 Gene Family in Soybean Reveals the Limitations of Gel-Based TILLING in Genes with High Copy Number. Front. Plant Sci. 2017;8:324. doi: 10.3389/fpls.2017.00324. PubMed DOI PMC
Liscombe D.K., O’Connor S.E. A Virus-Induced Gene Silencing Approach to Understanding Alkaloid Metabolism in Catharanthus Roseus. Phytochemistry. 2011;72:1969–1977. doi: 10.1016/j.phytochem.2011.07.001. PubMed DOI PMC
Bird D.A., Franceschi V.R., Facchini P.J. A Tale of Three Cell Types: Alkaloid Biosynthesis Is Localized to Sieve Elements in Opium Poppy. Plant Cell. 2003;15:2626–2635. doi: 10.1105/tpc.015396. PubMed DOI PMC
Ozber N., Facchini P.J. Phloem-Specific Localization of Benzylisoquinoline Alkaloid Metabolism in Opium Poppy. J. Plant Physiol. 2022;271:153641. doi: 10.1016/j.jplph.2022.153641. PubMed DOI
Watkins J.L., Facchini P.J. Compartmentalization at the Interface of Primary and Alkaloid Metabolism. Curr. Opin. Plant Biol. 2022;66:102186. doi: 10.1016/j.pbi.2022.102186. PubMed DOI
Tejklová E. Curly Stem—An Induced Mutation in Flax (Linum usitatissimum L.) Czech J. Genet. Plant Breed. 2012;38:125–128. doi: 10.17221/6246-CJGPB. DOI
Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinform. 2012;13:134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC
Seemann T. Snippy: Fast Bacterial Variant Calling from NGS Reads. GitHub; San Francisco, CA, USA: 2015.
The Galaxy Community The Galaxy Platform for Accessible, Reproducible and Collaborative Biomedical Analyses: 2022 Update. Nucleic Acids Res. 2022;50:W345–W351. doi: 10.1093/nar/gkac247. PubMed DOI PMC
Aranda P.S., LaJoie D.M., Jorcyk C.L. Bleach Gel: A Simple Agarose Gel for Analyzing RNA Quality. Electrophoresis. 2012;33:366–369. doi: 10.1002/elps.201100335. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI