Transcriptomic and Proteomic Analysis of Drought Stress Response in Opium Poppy Plants during the First Week of Germination
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
QK1810391
Ministerstvo Zemědělství
GAJU027/2019/Z
Jihočeská Univerzita v Českých Budějovicích
SGS01/PřF/2020
Ostravská Univerzita v Ostravě
LM2018127
Central European Institute of Technology
PubMed
34579414
PubMed Central
PMC8465278
DOI
10.3390/plants10091878
PII: plants10091878
Knihovny.cz E-resources
- Keywords
- Papaver somniferum, dehydrins, drought response, gene expression, opium poppy, plant stress, proteomics, transcriptomics,
- Publication type
- Journal Article MeSH
Water deficiency is one of the most significant abiotic stresses that negatively affects growth and reduces crop yields worldwide. Most research is focused on model plants and/or crops which are most agriculturally important. In this research, drought stress was applied to two drought stress contrasting varieties of Papaver somniferum (the opium poppy), a non-model plant species, during the first week of its germination, which differ in responses to drought stress. After sowing, the poppy seedlings were immediately subjected to drought stress for 7 days. We conducted a large-scale transcriptomic and proteomic analysis for drought stress response. At first, we found that the transcriptomic and proteomic profiles significantly differ. However, the most significant findings are the identification of key genes and proteins with significantly different expressions relating to drought stress, e.g., the heat-shock protein family, dehydration responsive element-binding transcription factors, ubiquitin E3 ligase, and others. In addition, metabolic pathway analysis showed that these genes and proteins were part of several biosynthetic pathways most significantly related to photosynthetic processes, and oxidative stress responses. A future study will focus on a detailed analysis of key genes and the development of selection markers for the determination of drought-resistant varieties and the breeding of new resistant lineages.
See more in PubMed
Rollins J.A., Habte E., Templer S.E., Colby T., Schmidt J., Von Korff M. Leaf Proteome Alterations in the Context of Physiological and Morphological Responses to Drought and Heat Stress in Barley (Hordeum vulgare L.) J. Exp. Bot. 2013;64:3201–3212. doi: 10.1093/jxb/ert158. PubMed DOI PMC
Zougmoré R.B., Partey S.T., Ouédraogo M., Torquebiau E., Campbell B.M. Facing Climate Variability in Sub-Saharan Africa: Analysis of Climate-Smart Agriculture Opportunities to Manage Climate-Related Risks. Cah. Agric. 2018;27:3400. doi: 10.1051/cagri/2018019. DOI
Neha P., Kumar M., Solankey S.S. Impact of Drought and Salinity on Vegetable Crops and Mitigation Strategies. In: Solankey S.S., Kumari M., Kumar M., editors. Advances in Research on Vegetable Production Under a Changing Climate Vol. 1. Springer International Publishing; Cham, Switzerland: 2021. pp. 235–253. Advances in Olericulture.
Singh D., Laxmi A. Transcriptional Regulation of Drought Response: A Tortuous Network of Transcriptional Factors. Front. Plant Sci. 2015;6:895. doi: 10.3389/fpls.2015.00895. PubMed DOI PMC
Xiong Q., Cao C., Shen T., Zhong L., He H., Chen X. Comprehensive Metabolomic and Proteomic Analysis in Biochemical Metabolic Pathways of Rice Spikes under Drought and Submergence Stress. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2019;1867:237–247. doi: 10.1016/j.bbapap.2019.01.001. PubMed DOI
Dias M.C., Pinto D.C.G.A., Figueiredo C., Santos C., Silva A.M.S. Phenolic and Lipophilic Metabolite Adjustments in Olea Europaea (Olive) Trees during Drought Stress and Recovery. Phytochemistry. 2021;185:112695. doi: 10.1016/j.phytochem.2021.112695. PubMed DOI
Fahad S., Bajwa A.A., Nazir U., Anjum S.A., Farooq A., Zohaib A., Sadia S., Nasim W., Adkins S., Saud S. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017;8:1147. doi: 10.3389/fpls.2017.01147. PubMed DOI PMC
Anjum S.A., Ashraf U., Tanveer M., Khan I., Hussain S., Shahzad B., Zohaib A., Abbas F., Saleem M.F., Ali I. Drought Induced Changes in Growth, Osmolyte Accumulation and Antioxidant Metabolism of Three Maize Hybrids. Front. Plant Sci. 2017;8:69. doi: 10.3389/fpls.2017.00069. PubMed DOI PMC
Halliwell B. Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life. Plant Physiol. 2006;141:312–322. doi: 10.1104/pp.106.077073. PubMed DOI PMC
Shinozaki K., Yamaguchi-Shinozaki K. Gene Networks Involved in Drought Stress Response and Tolerance. J. Exp. Bot. 2007;58:221–227. doi: 10.1093/jxb/erl164. PubMed DOI
Mahmood T., Khalid S., Abdullah M., Ahmed Z., Shah M.K.N., Ghafoor A., Du X. Insights into Drought Stress Signaling in Plants and the Molecular Genetic Basis of Cotton Drought Tolerance. Cells. 2020;9:105. doi: 10.3390/cells9010105. PubMed DOI PMC
Pour-Benab S.M., Fabriki-Ourang S., Mehrabi A.-A. Expression of Dehydrin and Antioxidant Genes and Enzymatic Antioxidant Defense under Drought Stress in Wild Relatives of Wheat. Biotechnol. Biotechnol. Equip. 2019;33:1063–1073. doi: 10.1080/13102818.2019.1638300. DOI
Ennajeh M., Vadel A.M., Khemira H. Osmoregulation and Osmoprotection in the Leaf Cells of Two Olive Cultivars Subjected to Severe Water Deficit. Acta Physiol. Plant. 2009;31:711–721. doi: 10.1007/s11738-009-0283-6. DOI
Cuevas-Velazquez C.L., Reyes J.L., Covarrubias A.A. Group 4 Late Embryogenesis Abundant Proteins as a Model to Study Intrinsically Disordered Proteins in Plants. Plant Signal. Behav. 2017;12:e1343777. doi: 10.1080/15592324.2017.1343777. PubMed DOI PMC
Rodziewicz P., Swarcewicz B., Chmielewska K., Wojakowska A., Stobiecki M. Influence of Abiotic Stresses on Plant Proteome and Metabolome Changes. Acta Physiol. Plant. 2014;36:1–19. doi: 10.1007/s11738-013-1402-y. DOI
Liu H., Yang Y., Liu D., Wang X., Zhang L. Transcription Factor TabHLH49 Positively Regulates Dehydrin WZY2 Gene Expression and Enhances Drought Stress Tolerance in Wheat. BMC Plant Biol. 2020;20:259. doi: 10.1186/s12870-020-02474-5. PubMed DOI PMC
Abedini R., GhaneGolmohammadi F., PishkamRad R., Pourabed E., Jafarnezhad A., Shobbar Z.-S., Shahbazi M. Plant Dehydrins: Shedding Light on Structure and Expression Patterns of Dehydrin Gene Family in Barley. J. Plant Res. 2017;130:747–763. doi: 10.1007/s10265-017-0941-5. PubMed DOI
Kumar T., Tiwari N., Bharadwaj C., Sarker A., Pappula S.P.R., Singh S., Singh M. Identification of Allelic Variation in Drought Responsive Dehydrin Gene Based on Sequence Similarity in Chickpea (Cicer arietinum L.) Front. Genet. 2020;11:1579. doi: 10.3389/fgene.2020.584527. PubMed DOI PMC
Čepl J., Stejskal J., Korecký J., Hejtmánek J., Faltinová Z., Lstibůrek M., Gezan S. The Dehydrins Gene Expression Differs across Ecotypes in Norway Spruce and Relates to Weather Fluctuations. Sci. Rep. 2020;10:20789. doi: 10.1038/s41598-020-76900-x. PubMed DOI PMC
Vaseva I., Akiscan Y., Demirevska K., Anders I., Feller U. Drought Stress Tolerance of Red and White Clover–Comparative Analysis of Some Chaperonins and Dehydrins. Sci. Hortic. 2011;130:653–659. doi: 10.1016/j.scienta.2011.08.021. DOI
Beaudoin G.A., Facchini P.J. Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy. Planta. 2014;240:19–32. doi: 10.1007/s00425-014-2056-8. PubMed DOI
Marciano M.A., Panicker S.X., Liddil G.D., Lindgren D., Sweder K.S. Development of a Method to Extract Opium Poppy (Papaver somniferum L.) DNA from Heroin. Sci. Rep. 2018;8:2509. PubMed PMC
Zhang Z., Li C., Zhang J., Chen F., Gong Y., Li Y., Su Y., Wei Y., Zhao Y. Selection of the Reference Gene for Expression Normalization in Papaver Somniferum L. under Abiotic Stress and Hormone Treatment. Genes. 2020;11:124. doi: 10.3390/genes11020124. PubMed DOI PMC
Dąbrowski G., Czaplicki S., Konopka I. Composition and Quality of Poppy (Papaver somniferum L.) Seed Oil Depending on the Extraction Method. LWT. 2020;134:110167. doi: 10.1016/j.lwt.2020.110167. DOI
Solanki G., Dodiya N.S., Kunwar R., Bisen P., Kumar R., Singh J.S. Character Association and Path Coefficient Analysis for Seed Yield and Latex Yield in Opium Poppy (Papaver somniferum L.) Int. J. Curr. Microbiol. Appl. Sci. 2017;6:1116–1123. doi: 10.20546/ijcmas.2017.608.138. DOI
Özcan M.M., Atalay Ç. Determination of Seed and Oil Properties of Some Poppy (Papaver somniferum L.) Varieties. Grasas Y Aceites. 2006;57:169–174.
Prochazka P., Smutka L. Czech Republic as an Important Producer of Poppy Seed. Agris-Line Pap. Econ. Inform. 2012;4:35–47.
Zhao Y., Gao C., Shi F., Yun L., Jia Y., Wen J. Transcriptomic and Proteomic Analyses of Drought Responsive Genes and Proteins in Agropyron Mongolicum Keng. Curr. Plant Biol. 2018;14:19–29. doi: 10.1016/j.cpb.2018.09.005. DOI
Li C., Wang Z., Nong Q., Lin L., Xie J., Mo Z., Huang X., Song X., Malviya M.K., Solanki M.K., et al. Physiological Changes and Transcriptome Profiling in Saccharum Spontaneum L. Leaf under Water Stress and Re-Watering Conditions. Sci. Rep. 2021;11:5525. doi: 10.1038/s41598-021-85072-1. PubMed DOI PMC
Peng Z., Wang M., Li F., Lv H., Li C., Xia G. A Proteomic Study of the Response to Salinity and Drought Stress in an Introgression Strain of Bread Wheat. Mol. Cell. Proteom. 2009;8:2676–2686. doi: 10.1074/mcp.M900052-MCP200. PubMed DOI PMC
Li J., Wang Y., Wang L., Zhu J., Deng J., Tang R., Chen G. Integration of Transcriptomic and Proteomic Analyses for Finger Millet [Eleusine Coracana (L.) Gaertn.] in Response to Drought Stress. PLoS ONE. 2021;16:e0247181. doi: 10.1371/journal.pone.0247181. PubMed DOI PMC
Andersen S.B. Plant Breeding from Laboratories to Fields. University of Copenhagen; Copenhagen, Denmark: 2013.
Riyazuddin R., Nisha N., Singh K., Verma R., Gupta R. Involvement of Dehydrin Proteins in Mitigating the Negative Effects of Drought Stress in Plants. Plant Cell Rep. 2021 doi: 10.1007/s00299-021-02720-6. PubMed DOI
Davik J., Koehler G., From B., Torp T., Rohloff J., Eidem P., Wilson R.C., Sønsteby A., Randall S.K., Alsheikh M. Dehydrin, Alcohol Dehydrogenase, and Central Metabolite Levels Are Associated with Cold Tolerance in Diploid Strawberry (Fragaria Spp.) Planta. 2013;237:265–277. doi: 10.1007/s00425-012-1771-2. PubMed DOI
Kim S.Y., Nam K.H. Physiological Roles of ERD10 in Abiotic Stresses and Seed Germination of Arabidopsis. Plant Cell Rep. 2010;29:203–209. doi: 10.1007/s00299-009-0813-0. PubMed DOI
Šunderlíková V., Wilhelm E. High Accumulation of Legumin and Lea-like MRNAs during Maturation Is Associated with Increased Conversion Frequency of Somatic Embryos from Pedunculate Oak (Quercus robur L.) Protoplasma. 2002;220:97–103. doi: 10.1007/s00709-002-0025-8. PubMed DOI
Wang R.Y., Wang H.G., Liu X.Y., Lian S., Chen L., Qiao Z.J., McInerney C.E., Wang L. Drought-Induced Transcription of Resistant and Sensitive Common Millet Varieties. J. Anim. Plant Sci. 2017;27:1303–1314.
Morales-Merida B.E., Villicaña C., Perales-Torres A.L., Martínez-Montoya H., Castillo-Ruiz O., León-Chan R., Lighbourn-Rojas L.A., Heredia J.B., León-Félix J. Transcriptomic Analysis in Response to Combined Stress by UV-B Radiation and Cold in Belle Pepper (Capsicum annuum) Int. J. Agric. Biol. 2021;25:1–12.
Bettencourt B.R., Hogan C.C., Nimali M., Drohan B.W. Inducible and Constitutive Heat Shock Gene Expression Responds to Modification of Hsp70 Copy Number in Drosophila Melanogaster but Does Not Compensate for Loss of Thermotolerance in Hsp70 Null Flies. BMC Biol. 2008;6:5. doi: 10.1186/1741-7007-6-5. PubMed DOI PMC
Ge S.X., Jung D., Yao R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Bioinformatics. 2020;36:2628–2629. doi: 10.1093/bioinformatics/btz931. PubMed DOI PMC
Department of Primary Industries, Parks, Water and Environment Best Practice Poppy Growing Guide. [(accessed on 10 August 2021)];2019 Available online: https://dpipwe.tas.gov.au/agriculture/plant-industries/best-practice-poppy-growing-guide.
Verma G., Srivastava D., Tiwari P., Chakrabarty D. Reactive Oxygen, Nitrogen and Sulfur Species in Plants. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2019. ROS Modulation in Crop Plants Under Drought Stress; pp. 311–336.
Deeba F., Pandey A.K., Ranjan S., Mishra A., Singh R., Sharma Y.K., Shirke P.A., Pandey V. Physiological and Proteomic Responses of Cotton (Gossypium herbaceum L.) to Drought Stress. Plant Physiol. Biochem. 2012;53:6–18. doi: 10.1016/j.plaphy.2012.01.002. PubMed DOI
Sharma S., Villamor J.G., Verslues P.E. Essential Role of Tissue-Specific Proline Synthesis and Catabolism in Growth and Redox Balance at Low Water Potential. Plant Physiol. 2011;157:292–304. doi: 10.1104/pp.111.183210. PubMed DOI PMC
Blum A. Osmotic Adjustment Is a Prime Drought Stress Adaptive Engine in Support of Plant Production. Plant Cell Environ. 2017;40:4–10. doi: 10.1111/pce.12800. PubMed DOI
Graether S.P., Boddington K.F. Disorder and Function: A Review of the Dehydrin Protein Family. Front. Plant Sci. 2014;5:576. doi: 10.3389/fpls.2014.00576. PubMed DOI PMC
Hara M., Shinoda Y., Tanaka Y., Kuboi T. DNA Binding of Citrus Dehydrin Promoted by Zinc Ion. Plant Cell Environ. 2009;32:532–541. doi: 10.1111/j.1365-3040.2009.01947.x. PubMed DOI
Saucedo A.L., Hernández-Domínguez E.E., de Luna-Valdez L.A., Guevara-García A.A., Escobedo-Moratilla A., Bojorquéz-Velázquez E., Del Río-Portilla F., Fernández-Velasco D.A., Barba de la Rosa A.P. Insights on Structure and Function of a Late Embryogenesis Abundant Protein from Amaranthus Cruentus: An Intrinsically Disordered Protein Involved in Protection against Desiccation, Oxidant Conditions, and Osmotic Stress. Front. Plant Sci. 2017;8:497. doi: 10.3389/fpls.2017.00497. PubMed DOI PMC
Jing H., Li C., Ma F., Ma J.-H., Khan A., Wang X., Zhao L.-Y., Gong Z.-H., Chen R.-G. Genome-Wide Identification, Expression Diversication of Dehydrin Gene Family and Characterization of CaDHN3 in Pepper (Capsicum annuum L.) PLoS ONE. 2016;11:e0161073. doi: 10.1371/journal.pone.0161073. PubMed DOI PMC
Egerton-Warburton L.M., Balsamo R.A., Close T.J. Temporal Accumulation and Ultrastructural Localization of Dehydrins in Zea Mays. Physiol. Plant. 1997;101:545–555. doi: 10.1111/j.1399-3054.1997.tb01036.x. DOI
Verma G., Dhar Y.V., Srivastava D., Kidwai M., Chauhan P.S., Bag S.K., Asif M.H., Chakrabarty D. Genome-Wide Analysis of Rice Dehydrin Gene Family: Its Evolutionary Conservedness and Expression Pattern in Response to PEG Induced Dehydration Stress. PLoS ONE. 2017;12:e0176399. doi: 10.1371/journal.pone.0176399. PubMed DOI PMC
Ruan J., Zhou Y., Zhou M., Yan J., Khurshid M., Weng W., Cheng J., Zhang K. Jasmonic Acid Signaling Pathway in Plants. Int. J. Mol. Sci. 2019;20:2479. doi: 10.3390/ijms20102479. PubMed DOI PMC
Liu J., Wang R., Liu W., Zhang H., Guo Y., Wen R. Genome-Wide Characterization of Heat-Shock Protein 70s from Chenopodium Quinoa and Expression Analyses of Cqhsp70s in Response to Drought Stress. Genes. 2018;9:35. doi: 10.3390/genes9020035. PubMed DOI PMC
Sato Y., Yokoya S. Enhanced Tolerance to Drought Stress in Transgenic Rice Plants Overexpressing a Small Heat-Shock Protein, SHSP17.7. Plant Cell Rep. 2008;27:329–334. doi: 10.1007/s00299-007-0470-0. PubMed DOI
Jacob P., Hirt H., Bendahmane A. The Heat-Shock Protein/Chaperone Network and Multiple Stress Resistance. Plant Biotechnol. J. 2017;15:405–414. doi: 10.1111/pbi.12659. PubMed DOI PMC
Ye S., Yu S., Shu L., Wu J., Wu A., Luo L. Expression Profile Analysis of 9 Heat Shock Protein Genes throughout the Life Cycle and under Abiotic Stress in Rice. Chin. Sci. Bull. 2012;57:336–343. doi: 10.1007/s11434-011-4863-7. DOI
Wang G., Cai G., Kong F., Deng Y., Ma N., Meng Q. Overexpression of Tomato Chloroplast-Targeted DnaJ Protein Enhances Tolerance to Drought Stress and Resistance to Pseudomonas Solanacearum in Transgenic Tobacco. Plant Physiol. Biochem. 2014;82:95–104. doi: 10.1016/j.plaphy.2014.05.011. PubMed DOI
Xia Z., Zhang X., Li J., Su X., Liu J. Overexpression of a Tobacco J-Domain Protein Enhances Drought Tolerance in Transgenic Arabidopsis. Plant Physiol. Biochem. 2014;83:100–106. doi: 10.1016/j.plaphy.2014.07.023. PubMed DOI
Nakashima K., Yamaguchi-Shinozaki K., Shinozaki K. The Transcriptional Regulatory Network in the Drought Response and Its Crosstalk in Abiotic Stress Responses Including Drought, Cold, and Heat. Front. Plant Sci. 2014;5:170. doi: 10.3389/fpls.2014.00170. PubMed DOI PMC
Dossa K., Wei X., Li D., Fonceka D., Zhang Y., Wang L., Yu J., Boshou L., Diouf D., Cissé N., et al. Insight into the AP2/ERF Transcription Factor Superfamily in Sesame and Expression Profiling of DREB Subfamily under Drought Stress. BMC Plant Biol. 2016;16:171. doi: 10.1186/s12870-016-0859-4. PubMed DOI PMC
Ding S., Zhang B., Qin F. Arabidopsis RZFP34/CHYR1, a Ubiquitin E3 Ligase, Regulates Stomatal Movement and Drought Tolerance via SnRK2.6-Mediated Phosphorylation. Plant Cell. 2015;27:3228–3244. doi: 10.1105/tpc.15.00321. PubMed DOI PMC
Zhou S., Li M., Guan Q., Liu F., Zhang S., Chen W., Yin L., Qin Y., Ma F. Physiological and Proteome Analysis Suggest Critical Roles for the Photosynthetic System for High Water-Use Efficiency under Drought Stress in Malus. Plant Sci. 2015;236:44–60. doi: 10.1016/j.plantsci.2015.03.017. PubMed DOI
Sarwar M.B., Ahmad Z., Rashid B., Hassan S., Gregersen P.L., Leyva M.D., Nagy I., Asp T., Husnain T. De Novo Assembly of Agave Sisalana Transcriptome in Response to Drought Stress Provides Insight into the Tolerance Mechanisms. Sci. Rep. 2019;9:396. doi: 10.1038/s41598-018-35891-6. PubMed DOI PMC
Saito K., Yonekura-Sakakibara K., Nakabayashi R., Higashi Y., Yamazaki M., Tohge T., Fernie A.R. The Flavonoid Biosynthetic Pathway in Arabidopsis: Structural and Genetic Diversity. Plant Physiol. Biochem. 2013;72:21–34. doi: 10.1016/j.plaphy.2013.02.001. PubMed DOI
Halbwirth H. The Creation and Physiological Relevance of Divergent Hydroxylation Patterns in the Flavonoid Pathway. Int. J. Mol. Sci. 2010;11:595–621. doi: 10.3390/ijms11020595. PubMed DOI PMC
Yao X., Wang T., Wang H., Liu H., Liu S., Zhao Q., Chen K., Zhang P. Identification, Characterization and Expression Analysis of the Chalcone Synthase Family in the Antarctic Moss Pohlia nutans. Antarct. Sci. 2019;31:23–33. doi: 10.1017/S0954102018000470. DOI
Jiang L., Gao Q.C., Chen Z.P., Zhang J.J., Bai X.Y., He X.L., Xu Q.X. Selenium Tolerance of an Arabidopsis Drought-Resistant Mutant Csm1-1. Russ. J. Plant Physiol. 2015;62:625–631. doi: 10.1134/S102144371505009X. DOI
Azzouz-Olden F., Hunt A.G., Dinkins R. Transcriptome Analysis of Drought-Tolerant Sorghum Genotype SC56 in Response to Water Stress Reveals an Oxidative Stress Defense Strategy. Mol. Biol. Rep. 2020;47:3291–3303. doi: 10.1007/s11033-020-05396-5. PubMed DOI PMC
Salekdeh G.H., Siopongco J., Wade L.J., Ghareyazie B., Bennett J. Proteomic Analysis of Rice Leaves during Drought Stress and Recovery. Proteomics. 2002;2:1131–1145. doi: 10.1002/1615-9861(200209)2:9<1131::AID-PROT1131>3.0.CO;2-1. PubMed DOI
Shiriga K., Sharma R., Chaudhary K., Yadav S., Hossain F. Expression Pattern of Superoxide Dismutase Under Drought Stress in Maize. Int. J. Innov. Res. Sci. Eng. Technol. 2014;3:11333–11337.
Weng M., Cui L., Liu F., Zhang M., Shan L., Yang S., Deng X.-P. Effects of Drought Stress on Antioxidant Enzymes in Seedlings of Different Wheat Genotypes. Pak. J. Bot. 2015;47:49–56.
Bolwell G.P., Bozak K., Zimmerlin A. Plant Cytochrome P450. Phytochemistry. 1994;37:1491–1506. doi: 10.1016/S0031-9422(00)89567-9. PubMed DOI
Ghodke P., Khandagale K., Thangasamy A., Kulkarni A., Narwade N., Shirsat D., Randive P., Roylawar P., Singh I., Gawande S.J., et al. Comparative Transcriptome Analyses in Contrasting Onion (Allium cepa L.) Genotypes for Drought Stress. PLoS ONE. 2020;15:e0237457. doi: 10.1371/journal.pone.0237457. PubMed DOI PMC
Duan F., Ding J., Lee D., Lu X., Feng Y., Song W. Overexpression of SoCYP85A1, a Spinach Cytochrome P450 Gene in Transgenic Tobacco Enhances Root Development and Drought Stress Tolerance. Front. Plant Sci. 2017;8:1909. doi: 10.3389/fpls.2017.01909. PubMed DOI PMC
Greenbaum D., Colangelo C., Williams K., Gerstein M. Comparing Protein Abundance and MRNA Expression Levels on a Genomic Scale. Genome Biol. 2003;4:117. doi: 10.1186/gb-2003-4-9-117. PubMed DOI PMC
Koussounadis A., Langdon S.P., Um I.H., Harrison D.J., Smith V.A. Relationship between Differentially Expressed MRNA and MRNA-Protein Correlations in a Xenograft Model System. Sci. Rep. 2015;5:10775. doi: 10.1038/srep10775. PubMed DOI PMC
de Sousa Abreu R., Penalva L.O., Marcotte E.M., Vogel C. Global Signatures of Protein and MRNA Expression Levels. Mol. Biosyst. 2009;5:1512–1526. doi: 10.1039/b908315d. PubMed DOI PMC
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Babraham Bioinformatics, Babraham Institute; Cambridge, UK: 2010.
Araújo M., Prada J., Mariz-Ponte N., Santos C., Pereira J.A., Pinto D.C.G.A., Silva A.M.S., Dias M.C. Antioxidant Adjustments of Olive Trees (Olea europaea) under Field Stress Conditions. Plants. 2021;10:684. doi: 10.3390/plants10040684. PubMed DOI PMC
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K.P. STRING V10: Protein–Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Res. 2015;43:D447–D452. doi: 10.1093/nar/gku1003. PubMed DOI PMC
New Low Morphine Opium Poppy Genotype Obtained by TILLING Approach