The dehydrins gene expression differs across ecotypes in Norway spruce and relates to weather fluctuations
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33247164
PubMed Central
PMC7695824
DOI
10.1038/s41598-020-76900-x
PII: 10.1038/s41598-020-76900-x
Knihovny.cz E-zdroje
- MeSH
- aklimatizace genetika MeSH
- ekotyp MeSH
- klimatické změny MeSH
- období sucha MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny MeSH
- rostlinné proteiny genetika fyziologie MeSH
- smrk genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- dehydrin proteins, plant MeSH Prohlížeč
- rostlinné proteiny MeSH
Norway spruce has a broad natural distribution range, which results in a substantial variety of its physiological and genetic variation. There are three distinct altitudinal ecotypes described in this tree species. The physiological optimum of each ecotype may be shifted due to ongoing climate change, especially in traits associated with water demand that might be crucial for adaptation. Dehydrins are proteins that help to mitigate the adverse effects of dehydration. Dehydrin gene expression patterns appeared to be a suitable marker for plant stress assessment. Genetically determined differences in response between individuals and populations were formerly studied, however, mainly in controlled conditions. We evaluated ecotypic variation in dehydrin gene expression in a clonal bank comprised of all three ecotypes. A genetic relationship among targeted trees was uncovered utilizing GBS (Genotyping by Sequencing) platform. We sampled 4-6 trees of each ecotype throughout 15 months period. Subsequently, we assessed the RNA expression of dehydrin genes by qRT-PCR. For this study, we deliberately selected dehydrins from different categories. Our findings detected significant differences among ecotypes in dehydrin expression. The association of recorded climatic variables and individual gene expression across the study period was evaluated and revealed, for certain genes, a correlation between dehydrin gene expression and precipitation, temperature, and day-length.
Zobrazit více v PubMed
Oleksyn J, Modrzýnski J, Tjoelker MG, Reich PB, Karolewski P. Growth and physiology of Picea abies populations from elevational transects: Common garden evidence for altitudinal ecotypes and cold adaptation. Funct. ecol. 1998;12(4):573–590. doi: 10.1046/j.1365-2435.1998.00236.x. DOI
Jansson G, et al. Norway spruce (Picea abies (L.) H. Karst.) Pâques L. (ed.) forest tree breeding in Europe. Manag. Ecosyst. 2013;25:123–176.
Müller-Starck G, Baradat Ph, Bergmann F. Genetic variation within European tree species. New For. 1992;6(1–4):23–47. doi: 10.1007/BF00120638. DOI
Morgenstern, E. K. of tree ecotypes in Geographic Variation in Forest Trees: Genetic Basis and Application of Knowledge in Silviculture 109–115 (Vancouver, Amsterdam, 1996).
Androsiuk P, et al. Genetic status of Norway spruce (Picea abies) breeding populations for northern Sweden. Silvae Genet. 2013;62(1–6):127–136. doi: 10.1515/sg-2013-0017. DOI
Farjon A, Filer D. Specific Adaptations in An atlas of the world's conifers: An Analysis of Their Distribution, Biogeography, Diversity and Conservation Status. The Netherlands: Springer; 2013.
Chakraborty D, et al. Selecting populations for non-analogous climate conditions using universal response functions: The case of Douglas-fir in central Europe. PLoS ONE. 2015;10(8):e0136357. doi: 10.1371/journal.pone.0136357. PubMed DOI PMC
van der Maaten-Theunissen, M., Kahle, H. P., & van der Maaten, E. Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann. Sci. 70(2), 185–193 (2013).
Trujillo-Moya C, et al. Drought sensitivity of norway spruce at the species' warmest fringe: Quantitative and molecular analysis reveals high genetic variation among and within provenances. G3 Genes Genom. Genet. 2018;g3:300524. PubMed PMC
Close TJ. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plantarum. 1996;97(4):795–803. doi: 10.1111/j.1399-3054.1996.tb00546.x. DOI
Campbell SA, Close TJ. Dehydrins: Genes, proteins, and associations with phenotypic traits. New Phytol. 1997;137(1):61–74. doi: 10.1046/j.1469-8137.1997.00831.x. DOI
Yakovlev IA, et al. Dehydrins expression related to timing of bud burst in Norway spruce. Planta. 2008;228(3):459–472. doi: 10.1007/s00425-008-0750-0. PubMed DOI
Eldhuset TD, et al. Drought affects tracheid structure, dehydrin expression, and above-and below ground growth in 5-year-old Norway spruce. Plant Soil. 2013;366(1–2):305–320. doi: 10.1007/s11104-012-1432-z. DOI
Hara M. The multifunctionality of dehydrins: An overview. Plant Signal. Behav. 2010;5(5):503–508. doi: 10.4161/psb.11085. PubMed DOI PMC
Graether SP, Boddington KF. Disorder and function: A review of the dehydrin protein family. Front. Plant Sci. 2014;5:576. doi: 10.3389/fpls.2014.00576. PubMed DOI PMC
Hanin M, et al. Plant dehydrins and stress tolerance: Versatile proteins for complex mechanisms. Plant Signal. Behav. 2011;6(10):1503–1509. doi: 10.4161/psb.6.10.17088. PubMed DOI PMC
Kosová K, et al. Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare) J. Plant Physiol. 2008;165(11):1142–1151. doi: 10.1016/j.jplph.2007.10.009. PubMed DOI
Yamasaki Y, Koehler G, Blacklock BJ, Randall SK. Dehydrin expression in soybean. Plant Physiol. Biochem. 2013;70:213–220. doi: 10.1016/j.plaphy.2013.05.013. PubMed DOI
Liu H, et al. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci. 2015;231:198–211. doi: 10.1016/j.plantsci.2014.12.006. PubMed DOI
Velasco-Conde T, Yakovlev I, Majada JP, Aranda I, Johnsen Ø. Dehydrins in maritime pine (Pinus pinaster) and their expression related to drought stress response. Tree Genet. Genomes. 2012;8(5):957–973. doi: 10.1007/s11295-012-0476-9. DOI
Stival Sena J, Giguère I, Rigault P, Bousquet J, Mackay J. Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression. Tree Physiol. 2018;38(3):442–456. doi: 10.1093/treephys/tpx125. PubMed DOI
Šindelář J. of experimental plot in Klonové Archivy Smrku Ztepilého Picea abies Karst. na PLO Zbraslav-Strnady—Polesí Jíloviště (VÚLHM, 1975).
Elshire RJ, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011;6(5):e19379. doi: 10.1371/journal.pone.0019379. PubMed DOI PMC
Yakovlev IA, Fossdal CG, Johnsen O, Junttila O, Skrøppa T. Analysis of gene expression during bud burst initiation in Norway spruce via ESTs from subtracted cDNA libraries. Tree Genet. Genomes. 2006;2(1):39–52. doi: 10.1007/s11295-005-0031-z. DOI
Kjellsen TD, Yakovlev IA, Fossdal CG, Strimbeck GR. Dehydrin accumulation and extreme low-temperature tolerance in Siberian spruce (Picea obovata) Tree Physiol. 2013;33(12):1354–1366. doi: 10.1093/treephys/tpt105. PubMed DOI
R Core Team. R. A language and environment for statistical computing. Preprint at https://www.R-project.org/ (2018).
Danecek P, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–2158. doi: 10.1093/bioinformatics/btr330. PubMed DOI PMC
Jombart T, Ahmed I. New tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27(21):3070–3071. doi: 10.1093/bioinformatics/btr521. PubMed DOI PMC
Gömöry D, Foffová E, Kmeť J, Longauer R, Romšáková I. Norway spruce (Picea abies [L.] Karst.) provenance variation in autumn cold hardiness: Adaptation or acclimation? Acta Biol. Cracov. Bot. 2010;52(2):42–49.
Cortleven A, et al. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 2019;42:998–1018. doi: 10.1111/pce.13494. PubMed DOI
Szabados L, Savoure A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010;15:89–97. doi: 10.1016/j.tplants.2009.11.009. PubMed DOI
Zulfiqar F, Akram NA, Ashraf M. Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta. 2020;251:3. doi: 10.1007/s00425-019-03293-1. PubMed DOI
Ciereszko I. Regulatory roles of sugars in plant growth and development. Acta Soc. Bot. Pol. 2018;87(2):66. doi: 10.5586/asbp.3583. DOI
Rowland LJ, Arora R. Proteins related to endodormancy (rest) in woody perennials. Plant Sci. 1997;126(2):119–144. doi: 10.1016/S0168-9452(97)00104-0. DOI
Erez A, Faust M, Line MJ. Changes in water status in peach buds on induction, development and release from dormancy. Sci. Hortic. 1998;73(2–3):111–123. doi: 10.1016/S0304-4238(97)00155-6. DOI
Kalberer SR, Wisniewski M, Arora R. Deacclimation and reacclimation of cold-hardy plants: Current understanding and emerging concepts. Plant Sci. 2006;171(1):3–16. doi: 10.1016/j.plantsci.2006.02.013. DOI
Welling A, Moritz T, Palva ET, Junttila O. Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol. 2002;129(4):1633–1641. doi: 10.1104/pp.003814. PubMed DOI PMC
Welling A, et al. Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.) J. Exp. Bot. 2004;55(396):507–516. doi: 10.1093/jxb/erh045. PubMed DOI
Karlson DT, Zeng Y, Stirm VE, Joly RJ, Ashworth EN. Photoperiodic regulation of a 24-kD dehydrin-like protein in red-osier dogwood (Cornus sericea L.) in relation to freeze-tolerance. Plant Cell Physiol. 2003;44(1):25–34. doi: 10.1093/pcp/pcg006. PubMed DOI
Carneros E, Yakovlev I, Viejo M, Olsen JE, Fossdal CG. The epigenetic memory of temperature during embryogenesis modifies the expression of bud burst-related genes in Norway spruce epitypes. Planta. 2017;246(3):553–566. doi: 10.1007/s00425-017-2713-9. PubMed DOI PMC
Asante DK, et al. Gene expression changes during short day induced terminal bud formation in Norway spruce. Plant Cell Environ. 2011;34(2):332–346. doi: 10.1111/j.1365-3040.2010.02247.x. PubMed DOI
Asante DK, et al. Effect of bud burst forcing on transcript expression of selected genes in needles of Norway spruce during autumn. Plant Physiol. Bioch. 2009;47(8):681–689. doi: 10.1016/j.plaphy.2009.03.004. PubMed DOI
Ruttink T, et al. A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell. 2007;19(8):2370–2390. doi: 10.1105/tpc.107.052811. PubMed DOI PMC
Genetic diversity of Norway spruce ecotypes assessed by GBS-derived SNPs