Genetic diversity of Norway spruce ecotypes assessed by GBS-derived SNPs

. 2021 Nov 30 ; 11 (1) : 23119. [epub] 20211130

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34848793
Odkazy

PubMed 34848793
PubMed Central PMC8632914
DOI 10.1038/s41598-021-02545-z
PII: 10.1038/s41598-021-02545-z
Knihovny.cz E-zdroje

We investigated the genetic structure of three phenotypically distinct ecotypic groups of Norway spruce (Picea abies) belonging to three elevational classes; namely, low- (acuminata), medium- (europaea), and high-elevation (obovata) form, each represented by 150 trees. After rigorous filtering, we used 1916 Genotyping-by-Sequencing generated SNPs for analysis. Outputs from three multivariate analysis methods (Bayesian clustering algorithm implemented in STRUCTURE, Principal Component Analysis, and the Discriminant Analysis of Principal Components) indicated the presence of a distinct genetic cluster representing the high-elevation ecotypic group. Our findings bring a vital message to forestry practice affirming that artificial transfer of forest reproductive material, especially for stands under harsh climate conditions, should be considered with caution.

Zobrazit více v PubMed

Lagercrantz U, Ryman N. Genetic structure of Norway spruce (Picea abies): Concordance of morphological and allozymic variation. Evolution (N.Y.) 1990;44:38. PubMed

Gömöry D. Effect of stand origin on the genetic diversity of Norway spruce (Picea abies Karst. populations. For. Ecol. Manage. 1992;54:215–223.

Burczyk J, Lewandowski A, Chalupka W. Local pollen dispersal and distant gene flow in Norway spruce (Picea abies [L.] Karst.) For. Ecol. Manage. 2004;197:39–48.

Vendramin GG, Anzidei M, Madaghiele A, Sperisen C, Bucci G. Chloroplast microsatellite analysis reveals the presence of population subdivision in Norway spruce (Picea abies K.) Genome. 2000;43:68–78. PubMed

Sperisen C, et al. Tandem repeats in plant mitochondrial genomes: Application to the analysis of population differentiation in the conifer Norway spruce. Mol. Ecol. 2001;10:257–263. PubMed

Heuertz M, et al. Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst] Genetics. 2006;174:2095–2105. PubMed PMC

Tollefsrud MM, et al. Genetic consequences of glacial survival and postglacial colonization in Norway spruce: Combined analysis of mitochondrial DNA and fossil pollen. Mol. Ecol. 2008;17:4134–4150. PubMed

Tollefsrud MM, et al. Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity (Edinb). 2009;102:549–562. PubMed

Maghuly F, Pinsker W, Praznik W, Fluch S. Genetic diversity in managed subpopulations of Norway spruce [Picea abies (L.) Karst.] For. Ecol. Manage. 2006;222:266–271.

Androsiuk P, et al. Genetic status of Norway spruce (Picea abies) breeding populations for Northern Sweden. Silvae Genet. 2013;62:127–136.

Meloni M, Perini D, Binelli G. The distribution of genetic variation in Norway spruce (Picea abies Karst.) populations in the western Alps. J. Biogeogr. 2007;34:929–938.

Stojnić S, et al. Assessment of genetic diversity and population genetic structure of Norway Spruce (Picea abies (L.) Karsten) at its Southern Lineage in Europe. Implications for conservation of forest genetic resources. Forests. 2019;10:258.

Pfeiffer A, Olivieri AM, Morgante M. Identification and characterization of microsatellites in Norway spruce (Picea abies K.) Genome. 1997;40:411–419. PubMed

Schubert R, Mueller-Starck G, Riegel R. Development of EST-PCR markers and monitoring their intrapopulational genetic variation in Picea abies (L.) Karst. Theor. Appl. Genet. 2001;103:1223–1231.

Fluch S, et al. Characterization of variable EST SSR markers for Norway spruce (Picea abies L.) BMC Res. Notes. 2011;4:1–6. PubMed PMC

Bínová Z, et al. Genetic structure of Norway spruce ecotypes studied by SSR markers. Forests. 2020;11:110.

Azaiez A, et al. A catalog of annotated high-confidence SNPs from exome capture and sequencing reveals highly polymorphic genes in Norway spruce (Picea abies) BMC Genom. 2018;19:942. PubMed PMC

Chen ZQ, et al. Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce. BMC Genom. 2018;19:1–16. PubMed PMC

Vidalis A, et al. Design and evaluation of a large sequence-capture probe set and associated SNPs for diploid and haploid samples of Norway spruce (Picea abies) bioRxiv. 2018 doi: 10.1101/291716. DOI

Chen J, et al. Genomic data provide new insights on the demographic history and the extent of recent material transfers in Norway spruce. Evol. Appl. 2019;12:1539–1551. PubMed PMC

Wang X, Bernhardsson C, Ingvarsson PK. Demography and natural selection have shaped genetic variation in the widely distributed conifer Norway spruce (Picea abies) Genome Biol. Evol. 2020;12:3803–3817. PubMed PMC

Bernhardsson C, Zan Y, Chen Z, Ingvarsson PK, Wu HX. Development of a highly efficient 50K single nucleotide polymorphism genotyping array for the large and complex genome of Norway spruce (Picea abies L. Karst) by whole genome resequencing and its transferability to other spruce species. Mol. Ecol. Resour. 2021;21:880–896. PubMed PMC

Goncharenko GG, Zadeika IV, Birgelis JJ. Genetic structure, diversity and differentiation of Norway spruce (Picea abies (L.) Karst.) in natural populations of Latvia. For. Ecol. Manage. 1995;72:31–38.

Korshikov II, Privalikhin SN. Genetic structure of populations of Norway spruce (Picea abies (L.) Karst. from Ukrainian Carpathians. Russ. J. Genet. 2007;43:1364–1372. PubMed

Unger GM, Konrad H, Geburek T. Does spatial genetic structure increase with altitude? An answer from Picea abies in Tyrol, Austria. Plant Syst. Evol. 2011;292:133–141.

Scotti I, Paglia G, Magni F, Morgante M. Population genetics of Norway spruce (Picea abies Karst.) at regional scale: Sensitivity of different microsatellite motif classes in detecting differentiation. Ann. For. Sci. 2006;63:485–491.

Trujillo-Moya C, et al. Drought sensitivity of Norway spruce at the species’ warmest fringe: Quantitative and molecular analysis reveals high genetic variation among and within provenances. G3 Genes Genomes Genet. 2018;8:1225–1245. PubMed PMC

Baison J, et al. Genome-wide association study identified novel candidate loci affecting wood formation in Norway spruce. Plant J. 2019;100:83–100. PubMed PMC

Capador-Barreto HD, et al. Killing two enemies with one stone? Genomics of resistance to two sympatric pathogens in Norway spruce. Mol. Ecol. 2021;30:4433–4447. PubMed

Caré O, Gailing O, Müller M, Krutovsky KV, Leinemann L. Crown morphology in Norway spruce (Picea abies [Karst.] L.) as adaptation to mountainous environments is associated with single nucleotide polymorphisms (SNPs) in genes regulating seasonal growth rhythm. Tree Genet. Genomes. 2020;16:4.

Milesi P, et al. Assessing the potential for assisted gene flow using past introduction of Norway spruce in southern Sweden: Local adaptation and genetic basis of quantitative traits in trees. Evol. Appl. 2019;12:1946–1959. PubMed PMC

Chen J, et al. Disentangling the roles of history and local selection in shaping clinal variation of allele frequencies and gene expression in Norway spruce (Picea abies) Genetics. 2012;191:865–881. PubMed PMC

Holliday JA, Ritland K, Aitken SN. Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis) New Phytol. 2010;188:501–514. PubMed

Li L, Chen J, Lascoux M. Clinal variation in growth cessation and FTL2 expression in Siberian spruce. Tree Genet. Genomes. 2019;15:82.

Ranade SS, García-Gil MR. Molecular signatures of local adaptation to light in Norway spruce. Planta. 2021;253:1–18. PubMed PMC

Romšáková I, et al. Nucleotide polymorphisms related to altitude and physiological traits in contrasting provenances of Norway spruce (Picea abies) Biologia (Bratisl). 2012;67:909–916.

Carneros E, Yakovlev I, Viejo M, Olsen JE, Fossdal CG. The epigenetic memory of temperature during embryogenesis modifies the expression of bud burst-related genes in Norway spruce epitypes. Planta. 2017;246:553–566. PubMed PMC

Mørtvedt Solvin T, Steffenrem A. Modelling the epigenetic response of increased temperature during reproduction on Norway spruce phenology. Scand. J. For. Res. 2019 doi: 10.1080/02827581.2018.1555278. DOI

Amaral J, et al. Advances and promises of epigenetics for forest trees. Forests. 2020;11:1–21.

Yakovlev, I., Viejo, M. & Fossdal, C. G. in The Spruce Genome (eds. Porth, I. M. & la Torre, A. R.) 65–95 (Springer International Publishing, 2020). 10.1007/978-3-030-21001-4_5

Di-Giovanni F, Kevan PG, Arnold J. Lower planetary boundary layer profiles of atmospheric conifer pollen above a seed orchard in northern Ontario, Canada. For. Ecol. Manage. 1996;83:87–97.

Spiecker H. Silvicultural management in maintaining biodiversity and resistance of forests in Europe—Temperate zone. J. Environ. Manage. 2003;67:55–65. PubMed

Jansen S, Konrad H, Geburek T. The extent of historic translocation of Norway spruce forest reproductive material in Europe. Ann. For. Sci. 2017;74:1–17.

Morgenstern EK. Environmental Influences and Geographic Variation. Geographic Variation in Forest Trees. UBC Press; 1996.

Priehäusser G. Die Fichten-Variationen und -Kombinationen des Bayr. Waldes nach phänotypischen Merkmalen mit Bestimmungsschlüssel. Forstwissenschaftliches Cent. 1958;77:151–171.

Samek V. Metodika výzkumu morfologické proměnlivosti smrku z hlediska fytogeografického [Methodology of research of morphological variability of spruce from the phytogeographical point of view] Zprávy Lesn. výzkumu [For. Rep.] 1964;10:18–25.

Geburek T, Robitschek K, Milasowszky N. A tree of many faces: Why are there different crown types in Norway spruce (Picea abies [L.] Karst.)? Flora Morphol. Distrib. Funct. Ecol. Plants. 2008;203:126–133.

Beissinger TM, et al. Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics. 2013;193:1073–1081. PubMed PMC

Bernhardsson, C., Wang, X., Eklöf, H. & Ingvarsson, P. K. in The Spruce Genome. Compendium of Plant Genomes (eds. Porth, I. & De la Torre, A.) 9–36 (Springer, 2020). 10.1007/978-3-030-21001-4_2

He J, et al. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 2014;5:1–8. PubMed PMC

Forester BR, Lasky JR, Wagner HH, Urban DL. Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol. Ecol. 2018;27:2215–2233. PubMed

Cornes RC, van der Schrier G, van den Besselaar EJM, Jones PD. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 2018;123:9391–9409.

Hijmans, R. J. & van Etten, J. R Package raster—Geographic analysis and modeling with raster data. (2012). http://CRAN.R-project.org/package=raster. Accesed 24 Feb 2021.

Lacko, J. R package RCzechia. (2020). https://github.com/jlacko/RCzechia

GIMP Development Team. GIMP 2.10.28. (2019).

Elshire RJ, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011;6:19379. PubMed PMC

Nystedt B, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497:579–584. PubMed

Sundell D, et al. The plant genome integrative explorer resource: PlantGenIE.org. New Phytol. 2015;208:1149–1156. PubMed

Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC

Bradbury PJ, et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–2635. PubMed

Glaubitz JC, et al. TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS ONE. 2014;9:e90346. PubMed PMC

Danecek P, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. PubMed PMC

Jombart T, Ahmed I. Adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–3071. PubMed PMC

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. PubMed PMC

Lischer HEL, Excoffier L. PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics. 2012;28:298–299. PubMed

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005;14:2611–2620. PubMed

Nei M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 1973;70:3321–3323. PubMed PMC

Jost L. GST and its relatives do not measure differentiation. Mol. Ecol. 2008;17:4015–4026. PubMed

Hedrick PW. A standardized genetic differentiation measure. Evolution (N. Y.) 2005;59:1633–1638. PubMed

Winter DJ. MMOD: An R library for the calculation of population differentiation statistics. Mol. Ecol. Resour. 2012;12:1158–1160. PubMed

Kamvar ZN, Tabima JF, Gr̈unwald NJ. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2014:1–14. PubMed PMC

Séré M, Thévenon S, Belem AMG, De Meeûs T. Comparison of different genetic distances to test isolation by distance between populations. Heredity (Edinb). 2017;119:55–63. PubMed PMC

Oksanen, J. et al. vegan: Community Ecology Package. (2019). https://rdrr.io/cran/vegan/man/vegan-package.html. (Accessed 28 June 2021)

Miller JM, Cullingham CI, Peery RM. The influence of a priori grouping on inference of genetic clusters: Simulation study and literature review of the DAPC method. Heredity. 2020;125:269–280. PubMed PMC

Pereira-Dias L, Vilanova S, Fita A, Prohens J, Rodríguez-Burruezo A. Genetic diversity, population structure, and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish Centre of diversity revealed by genotyping-by-sequencing (GBS) Hortic. Res. 2019;6:54. PubMed PMC

Zhu S, Niu E, Shi A, Mou B. Genetic diversity analysis of olive germplasm (Olea europaea L.) with genotyping-by-sequencing technology. Front. Genet. 2019;10:755. PubMed PMC

Gardner KM, et al. Fast and cost-effective genetic mapping in apple using next-generation sequencing. G3 Genes Genomes Genet. 2014;4:1681–1687. PubMed PMC

D’Agostino N, et al. GBS-derived SNP catalogue unveiled wide genetic variability and geographical relationships of Italian olive cultivars. Sci. Rep. 2018;8:1–13. PubMed PMC

Delfini J, et al. Population structure, genetic diversity and genomic selection signatures among a Brazilian common bean germplasm. Sci. Rep. 2021;11:1–12. PubMed PMC

Guajardo V, et al. Genome-wide SNP identification in Prunus rootstocks germplasm collections using Genotyping-by-Sequencing: phylogenetic analysis, distribution of SNPs and prediction of their effect on gene function. Sci. Rep. 2020;10:1–14. PubMed PMC

Zhu S, Niu E, Shi A, Mou B. Genetic diversity analysis of olive germplasm (Olea europaea L.) with genotyping-by-sequencing technology. Front. Genet. 2019;10:1–11. PubMed PMC

Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010;11:1–15. PubMed PMC

Jombart T, Collins C. A Tutorial for Discriminant Analysis of Principal Components (DAPC) Using adegenet 1.3-6. MRC Centre for Outbreak Analysis and Modelling; 2013.

Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE. Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv. Genet. 2006;7:295–302.

Caré O, et al. High morphological differentiation in crown architecture contrasts with low population genetic structure of German Norway spruce stands. Forests. 2018;9:752.

Lindgren D, et al. Can viable pollen carry scots pine genes over long distances? Grana. 1995;34:64–69.

Scalfi M, et al. Micro-and macro-geographic scale effect on the molecular imprint of selection and adaptation in Norway spruce. PLoS ONE. 2014;9:e115499. PubMed PMC

Di Pierro EA, et al. Adaptive variation in natural Alpine populations of Norway spruce (Picea abies [L.] Karst) at regional scale: Landscape features and altitudinal gradient effects. For. Ecol. Manage. 2017;405:350–359.

Hrivnák M, Krajmerová D, Gömöry D. Lack of signals of selection at candidate loci at a small geographical scale along a steep altitudinal gradient in Norway spruce (Picea abies [L.] Karst.) Acta Biol. Cracoviensia Ser. Bot. 2019;61:43–51.

Savolainen O, Pyhäjärvi T, Knürr T. Gene flow and local adaptation in trees. Annu. Rev. Ecol. Evol. Syst. 2007;38:595–619.

Feil R, Fraga MF. Epigenetics and the environment: Emerging patterns and implications. Nat. Rev. Genet. 2012;13:97–109. PubMed

Banta JA, Richards CL. Quantitative epigenetics and evolution. Heredity. 2018;121:210–224. PubMed PMC

Liu Y, El-Kassaby YA. Ecological drivers of plant life-history traits: Assessment of seed mass and germination variation using climate cues and nitrogen resources in conifers. Ecol. Indic. 2020;117:106517.

Piotti A, Leonardi S, Piovani P, Scalfi M, Menozzi P. Spruce colonization at treeline: Where do those seeds come from. Heredity (Edinb). 2009;103:136–145. PubMed

Pakkanen A, Nikkanen T, Pulkkinen P. Annual variation in pollen contamination and outcrossing in a Picea abies seed orchard. Scand. J. For. Res. 2000;15:399–404.

Sønstebø JH, et al. Genetic diversity of Norway spruce (Picea abies (L.) Karst.) seed orchard crops: Effects of number of parents, seed year, and pollen contamination. For. Ecol. Manage. 2018;411:132–141.

Bucci G, Vendramin GG, Ellstrand NC. Delineation of genetic zones in the European Norway spruce natural range: Preliminary evidence. Mol. Ecol. 2000;9:923–934. PubMed

Di Pierro E, et al. The effects of seed availability on habitat use by a specialist seed predator. Eur. J. Wildl. Res. 2011;57:585–595.

Matuszkiewicz W, Matuszkiewicz A. Pflanzensoziologische Untersuchungen der Waldgesellschaften des Riesengebirges. Acta Soc. Bot. Pol. 1960;29:499–530.

Koenig WD, Knops JMH, Carmen WJ, Pearse IS. What drives masting? The phenological synchrony hypothesis. Ecology. 2015;96:184–192. PubMed

Barbour RC, Potts BM, Vaillancourt RE, Tibbits WN. Gene flow between introduced and native Eucalyptus species: Flowering asynchrony as a barrier to F1 hybridisation between exotic E. nitens and native Tasmanian Symphyomyrtus species. For. Ecol. Manage. 2006;226:9–21.

Chmura DJ. Phenology differs among Norway spruce populations in relation to local variation in altitude of maternal stands in the Beskidy Mountains. New For. 2006;32:21–31.

Skrøppa T, Steffenrem A. Genetic variation in phenology and growth among and within norway spruce populations from two altitudinal transects in mid-Norway. Silva Fenn. 2019;53:10076.

Chmura DJ, et al. Variation in growth of Norway spruce in the IUFRO 1972 provenance experimental series. Silvae Genet. 2018;67:26–33.

Jurasek A, Martincova J. Specifika pěstování sadebního materiálu smrku ztepilého původem z horských poloh [Peculiarities of cultivating Norway spruce (Picea abies (L.) Karsten) planting originated from mountain localities] Rep. For. Res. 2005;50:18–23.

Hrdlicka O. Modravský smrk [Modrava Norway spruce] Lesn. Pr. 2005;84:14–15.

Modrzyński J, Eriksson G. Response of Picea abies populations from elevational transects in the Polish Sudety and Carpathian mountains to simulated drought stress. For. Ecol. Manage. 2002;165:105–116.

Oleksyn J, et al. Growth and physiology of Picea abies populations from elevational transects: Common garden evidence for altitudinal ecotypes and cold adaptation. Funct. Ecol. 1998;12:573–590.

Čepl J, et al. The dehydrins gene expression differs across ecotypes in Norway spruce and relates to weather fluctuations. Sci. Rep. 2020;10:20789. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...