Making the Genotypic Variation Visible: Hyperspectral Phenotyping in Scots Pine Seedlings
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38026471
PubMed Central
PMC10644830
DOI
10.34133/plantphenomics.0111
PII: 0111
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Hyperspectral reflectance contains valuable information about leaf functional traits, which can indicate a plant's physiological status. Therefore, using hyperspectral reflectance for high-throughput phenotyping of foliar traits could be a powerful tool for tree breeders and nursery practitioners to distinguish and select seedlings with desired adaptation potential to local environments. We evaluated the use of 2 nondestructive methods (i.e., leaf and proximal/canopy) measuring hyperspectral reflectance in the 350- to 2,500-nm range for phenotyping on 1,788 individual Scots pine seedlings belonging to lowland and upland ecotypes of 3 different local populations from the Czech Republic. Leaf-level measurements were collected using a spectroradiometer and a contact probe with an internal light source to measure the biconical reflectance factor of a sample of needles placed on a black background in the contact probe field of view. The proximal canopy measurements were collected under natural solar light, using the same spectroradiometer with fiber optical cable to collect data on individual seedlings' hemispherical conical reflectance factor. The latter method was highly susceptible to changes in incoming radiation. Both spectral datasets showed statistically significant differences among Scots pine populations in the whole spectral range. Moreover, using random forest and support vector machine learning algorithms, the proximal data obtained from the top of the seedlings offered up to 83% accuracy in predicting 3 different Scots pine populations. We conclude that both approaches are viable for hyperspectral phenotyping to disentangle the phenotypic and the underlying genetic variation within Scots pine seedlings.
Biospheric Sciences Laboratory NASA Goddard Space Flight Center Greenbelt MD USA
Center for Photonic Sciences University of Eastern Finland Joensuu Finland
Department of Environmental and Biological Sciences University of Eastern Finland Joensuu Finland
Department of Experimental Plant Biology Charles University Prague Czech Republic
Zobrazit více v PubMed
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, et al. . A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010;259(4):660–684.
Dyderski MK, Paź S, Frelich LE, Jagodziński AM. How much does climate change threaten European forest tree species distributions? Glob Chang Biol. 2018;24(3):1150–1163. PubMed
Ostonen I, Lõhmus K, Helmisaari H-S, Truu J, Meel S. Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiol. 2007;27(11):1627–1634. PubMed
Uria-Diez J, Pommerening A. Crown plasticity in Scots pine (Pinus sylvestris L.) as a strategy of adaptation to competition and environmental factors. Ecol Model. 2017;356:117–126.
Palmroth S, Berninger F, Nikinmaa E, Lloyd J, Pulkkinen P, Hari P. Structural adaptation rather than water conservation was observed in Scots pine over a range of wet to dry climates. Oecologia. 1999;121:302–309. PubMed
Ranade SS, García-Gil MR. Ecotypic variation in response to light spectra in Scots pine (Pinus sylvestris L.). Tree Physiol. 2013;33(2):195–201. PubMed
Poorter L, Castilho CV, Schietti J, Oliveira RS, Costa FRC. Can traits predict individual growth performance? A test in a hyperdiverse tropical forest. New Phytol. 2018;219(1):109–121. PubMed PMC
Araus JL, Cairns JE. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2014;19(et al.):52–61. PubMed
Mir RR, Reynolds M, Pinto F, Khan M, Bhat M. High-throughput phenotyping for crop improvement in the genomics era. Plant Sci. 2019;282:60–72. PubMed
Mazis A, Choudhury SD, Morgan PB, Stoerger V, Hiller J, Ge Y, Awada T. Application of high-throughput plant phenotyping for assessing biophysical traits and drought response in two oak species under controlled environment. For Ecol Manag. 2020;465: Article 118101.
Bian L, Zhang H, Ge Y, Čepl J, Stejskal J. Closing the gap between phenotyping and genotyping: Review of advanced, image-based phenotyping technologies in forestry. Ann For Sci. 2022;79:22.
Reynolds M, Chapman S, Crespo-Herrera L, Molero G, Mondal S, Pequeno DNL, Pinto F, Pinera-Chavez FJ, Poland J, Rivera-Amado C, et al. . Breeder friendly phenotyping. Plant Sci. 2020;295: Article 110396. PubMed
Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, Xiong L, Yan J. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Mol Plant. 2020;13(2):187–214. PubMed
Sims DA, Gamon JA. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ. 2002;81(2–3):337–354.
Maire G, François C, Dufrêne E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens Environ. 2004;89:1–28.
Gitelson AA, Solovchenko A. Non-invasive quantification of foliar pigments: Possibilities and limitations of reflectance- and absorbance-based approaches. J Photochem Photobiol B Biol. 2018;178(1):537–544. PubMed
Granlund L, Keski-Saari S, Kumpula T, Oksanen E, Keinänen M. Imaging lichen water content with visible to mid-wave infrared (400–5500 nm) spectroscopy. Remote Sens Environ. 2018;216:301–310.
Li H, Yang W, Lei J, She J, Zhou X. Estimation of leaf water content from hyperspectral data of different plant species by using three new spectral absorption indices. PLOS ONE. 2021;16(3): Article e0249351. PubMed PMC
Martin ME, Aber JD. High spectral resolution remote sensing of forest canopy lignin, nitrogen, and ecosystem processes. Ecol Appl. 1997;7(2):431–443.
Buschmann C, Lenk S, Lichtenthaler HK. Reflectance spectra and images of green leaves with different tissue structure and chlorophyll content. Isr J Plant Sci. 2012;60(1–2):49–64.
Neuwirthová E, Lhotáková Z, Albrechtová J. The effect of leaf stacking on leaf reflectance and vegetation indices measured by contact probe during the season. Sensors. 2017;17(6):1202. PubMed PMC
Neuwirthová E, Lhotáková Z, Lukeš P, Albrechtová J. Leaf surface reflectance does not affect biophysical traits modelling from VIS-NIR spectra in plants with sparsely distributed trichomes. Remote Sens. 2021;13(20):4144.
Peñuelas J, Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 1998;3(4):151–156.
Campbell PKE, Rock BN, Martin ME, Neefus CD, Irons JR, Middleton EM, Albrechtova J. Detection of initial damage in Norway spruce canopies using hyperspectral airborne data. Int J Remote Sens. 2004;25(24):5557–5584.
Campbell PKE, Middleton EM, McMurtrey JE, Corp LA, Chappelle EW. Assessment of vegetation stress using reflectance or fluorescence measurements. J Environ Qual. 2007;36(3):832–845. PubMed
Pérez V, Molero G, Serbin SP, Condon AG, Reynolds MP, Furbank RT, Evans JR. Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat. J Exp Bot. 2017;69(3):483–496. PubMed PMC
Tao H, Feng H, Xu L, Miao M, Long H, Yue J, Li Z, Yang G, Yang X, Fan L, et al. Estimation of crop growth parameters using UAV-based hyperspectral remote sensing data. Sensors. 2020;20(5):1296. PubMed PMC
Campbell PKE, Huemmrich KF, Middleton EM, Ward LA, Julitta T, Daughtry CST, Burkart A, Russ AL, Kustas WP. Diurnal and seasonal variations in chlorophyll fluorescence associated with photosynthesis at leaf and canopy scales. Remote Sens. 2019;11(5):488.
Neuwirthová E, Kuusk A, Lhotáková Z, Kuusk J, Albrechtová J, Hallik L. Leaf age matters in remote sensing: Taking ground truth for spectroscopic studies in hemiboreal deciduous trees with continuous leaf formation. Remote Sens. 2021;13(7):1353.
Korecký J, Čepl J, Stejskal J, Faltinová Z, Dvořák J, Lstibůrek M, El-Kassaby YA. Genetic diversity of Norway spruce ecotypes assessed by GBS-derived SNPs. Sci Rep. 2021;11(1):23119. PubMed PMC
Jansen S, Konrad H, Geburek T. The extent of historic translocation of Norway spruce forest reproductive material in Europe. Ann For Sci. 2017;74:56.
Haagsma M, Page GFM, Johnson JS, Still C, Waring KM, Sniezko RA, Selker JS. Using hyperspectral imagery to detect an invasive fungal pathogen and symptom severity in Pinus strobiformis seedlings of different genotypes. Remote Sens. 2020;12(24):4041.
Curran PJ. Remote sensing of foliar chemistry. Remote Sens Environ. 1989;30(3):271–278.
Gitelson AA, Merzlyak MN. Remote estimation of chlorophyll content in higher plant leaves. Int J Remote Sens. 1997;18(12):2691–2697.
Gates DM, Keegan HJ, Schleter JC, Weidner VR. Spectral properties of plants. Appl Opt. 1965;4(1):11–20.
Croft H, Chen JM, Zhang Y. The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures. Ecol Complex. 2014;17:119–130.
Eitel JUH, Gessler PE, Smith AMS, Robberecht R. Suitability of existing and novel spectral indices to remotely detect water stress in Populus spp. For Ecol Manag. 2006;229(1–3):170–182.
Gitelson AA, Merzlyak MN, Lichtenthaler HK. Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. J Plant Physiol. 1996;148(3–4):501–508.
Rock B, Vogelmann J, Williams D, Vogelmann A, Hoshizaki T. Remote detection of forest damage: Plant responses to stress may have spectral “signatures” that could be used to map, monitor, and measure forest damage. Bioscience. 1986;36(7):439–445.
Martin ME, Plourde LC, Ollinger SV, Smith M-L, McNeil BE. A generalizable method for remote sensing of canopy nitrogen across a wide range of forest ecosystems. Remote Sens Environ. 2008;112(9):3511–3519.
Kokaly RF, Asner GP, Ollinger SV, Martin ME, Wessman CA. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens Environ. 2009;113(Suppl. 1):S78–S91.
Cavender-Bares J, Meireles JE, Couture JJ, Kaproth MA, Kingdon CC, Singh A, Serbin SP, Center A, Zuniga E, Pilz G, et al. . Associations of leaf spectra with genetic and phylogenetic variation in oaks: Prospects for remote detection of biodiversity. Remote Sens. 2016;8(3):221.
Claverie M, Ju J, Masek JG, Dungan JL, Vermote EF, Roger J-C, Skakun SV, Justice C. The harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens Environ. 2018;219:145–161.
Vanbrabant Y, Tits L, Delalieux S, Pauly K, Verjans W, Somers B. Multitemporal chlorophyll mapping in pome fruit orchards from remotely piloted aircraft systems. Remote Sens. 2019;11(12):1468.
Einzmann K, Atzberger C, Pinnel N, Glas C, Böck S, Seitz R, Immitzer M. Early detection of spruce vitality loss with hyperspectral data: Results of an experimental study in Bavaria, Germany. Remote Sens Environ. 2021;266: Article 112676.
Einzmann K, Ng W-T, Immitzer M, Pinnel N, Atzberger C. Method analysis for collecting and processing in-situ hyperspectral needle reflectance data for monitoring Norway spruce<BR> Methodenanalyse zur Erfassung und Prozessierung hyperspektraler in-situ Nadelreflexionsdaten zum monitoring von Fichten. Photogramm Fernerkun Geoinform. 2014;2014:423–434.
Martinez NE, Sharp JL, Kuhne WW, Johnson TE, Stafford CT, Duff MC. Assessing the use of reflectance spectroscopy in determining CsCl stress in the model species Arabidopsis thaliana. Int J Remote Sens. 2015;36(23):5887–5915.
Lhotáková Z, Kopačková-Strnadová V, Oulehle F, Homolová L, Neuwirthová E, Švik M, Janoutová R, Albrechtová J. Foliage biophysical trait prediction from laboratory spectra in Norway spruce is more affected by needle age than by site soil conditions. Remote Sens. 2021;13(3):391.
Kupková L, Potůčková M, Buřičová M, Kopačková V, Lhotáková Z, Albrechtová J. Determination of lignin content in Norway spruce foliage using Nir spectroscopy and hyperspectral data. Paper presented at: Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium; 2012 July 22–27; Munich, Germany.
Rajewicz PA, Atherton J, Alonso L, Porcar-Castell A. Leaf-level spectral fluorescence measurements: Comparing methodologies for broadleaves and needles. Remote Sens. 2019;11(5):532.
Malenovský Z, Albrechtová J, Lhotáková Z, Zurita-Milla R, Clevers JGPW, Schaepman ME, Cudlín P. Applicability of the PROSPECT model for Norway spruce needles. Int J Remote Sens. 2006;27(24):5315–5340.
Hovi A, Mõttus M, Juola J, Manoocheri F, Ikonen E, Rautiainen M. Evaluating the performance of a double integrating sphere in measurement of reflectance, transmittance, and albedo of coniferous needles. Silva Fenn. 2020;54(2):10270.
Schaepman-Strub G, Schaepman ME, Painter TH, Dangel S, Martonchik JV. Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sens Environ. 2006;103(1):27–42.
Melendo-Vega J, Martín M, Pacheco-Labrador J, González-Cascón R, Moreno G, Pérez F, Migliavacca M, García M, North P, Riaño D. Improving the performance of 3-D radiative transfer model FLIGHT to simulate optical properties of a tree-grass ecosystem. Remote Sens. 2018;10(12):2061.
Slaton MR, Smith WK. Mesophyll architecture and cell exposure to intercellular air space in alpine, desert, and Forest species. Int J Plant Sci. 2002;163:937–948.
Lukeš P, Neuwirthová E, Lhotáková Z, Janoutová R, Albrechtová J. Upscaling seasonal phenological course of leaf dorsiventral reflectance in radiative transfer model. Remote Sens Environ. 2020;246: Article 111862.
Cao L, Coops NC, Innes JL, Dai J, Ruan H, She G. Tree species classification in subtropical forests using small-footprint full-waveform LiDAR data. Int J Appl Earth Obs Geoinf. 2016;49:39–51.
Zhang Y, Wang J, Wu Z, Lian J, Ye W, Yu F. Tree species classification using plant functional traits and leaf spectral properties along the vertical canopy position. Remote Sens. 2022;14(24):6227.
Tesfamichael SG, Newete SW, Adam E, Byrne MJ. Discriminating pure Tamarix species and their putative hybrids using field spectrometer. Geocarto Int. 2021;37(25):7733–7752.
Stasinski L, White DM, Nelson PR, Ree RH, Meireles JE. Reading light: Leaf spectra capture fine-scale diversity of closely related, hybridizing arctic shrubs. New Phytol. 2021;232(6):2283–2294. PubMed PMC
Sun H, Feng M, Xiao L, Yang W, Wang C, Jia X, Zhao Y, Zhao C, Muhammad SK, Li D. Assessment of plant water status in winter wheat (Triticum aestivum L.) based on canopy spectral indices. PLOS ONE. 2019;14(6):e0216890. PubMed PMC
Barnes RJ, Dhanoa MS, Lister SJ. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc. 1989;43:772–777.
Butler DG, Cullis BR, Gilmour AR, Gogel BJ, Thompson R. ASReml estimates variance components under a general linear mixed model by residual maximum likelihood (REML). In: ASReml-R reference manual Hemel Hempstead, UK: VSN International Ltd.; 2018.
Liaw A, Wiener M. Classification and regression by random forest. R news. 2002;2:18–22.
Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F, Chang C-C, Lin C-C. Misc functions of the Department of Statistics, Probability Theory Group (formerly: E1071) TU Wien; 2021.
Sanaeifar A, Zhu F, Sha J, Li X, He Y, Zhan Z. Rapid quantitative characterization of tea seedlings under lead-containing aerosol particles stress using Vis-NIR spectra. Sci Total Environ. 2022;802: Article 149824. PubMed
Poona NK, Niekerk A, Nadel RL, Ismail R. Random forest (RF) wrappers for waveband selection and classification of hyperspectral data. Appl Spectrosc. 2016;70(2):322–333. PubMed
Pandey P, Payn KG, Lu Y, Heine AJ, Walker TD, Acosta JJ, Young S. Hyperspectral imaging combined with machine learning for the detection of fusiform rust disease incidence in loblolly pine seedlings. Remote Sens. 2021;13(18):3595.
Verrelst J, Malenovský Z, Van der Tol C, Camps-Valls G, Gastellu-Etchegorry J-P, Lewis P, North P, Moreno J. Quantifying vegetation biophysical variables from imaging spectroscopy data: A review on retrieval methods. Surv Geophys. 2019;40:589–629. PubMed PMC
Haagsma M, Page GFM, Johnson JS, Still C, Waring KM, Sniezko RA, Selker JS. Model selection and timing of acquisition date impacts classification accuracy: A case study using hyperspectral imaging to detect white pine blister rust over time. Comput Electron Agric. 2021;191: Article 106555.
Meireles JE, Cavender-Bares J, Townsend PA, Ustin S, Gamon JA, Schweiger AK, Schaepman ME, Asner GP, Martin RE, Singh A, et al. . Leaf reflectance spectra capture the evolutionary history of seed plants. New Phytol. 2020;228(2):485–493. PubMed PMC
Čepl J, Stejskal J, Lhotáková Z, Holá D, Korecký J, Lstibůrek M, Tomášková I, Kočová M, Rothová O, Palovská M, et al. . Heritable variation in needle spectral reflectance of Scots pine (Pinus sylvestris L.) peaks in red edge. Remote Sens Environ. 2018;219:89–98.
Rock BN, Williams DL, Moss DM, Lauten GN, Kim M. High-spectral resolution field and laboratory optical reflectance measurements of red spruce and eastern hemlock needles and branches. Remote Sens Environ. 1994;47:176–189.
Jacquemoud S, Baret F. PROSPECT: A model of leaf optical properties spectra. Remote Sens Environ. 1990;34:75–91.
Schwanninger M, Rodrigues JC, Fackler K. A review of band assignments in near infrared spectra of wood and wood components. J Near Infrared Spectrosc. 2011;19:287–308.
Serrano L, Peñuelas J, Ustin SL. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote Sens Environ. 2002;81(2–3):355–364.
Soukupova J, Rock BN, Albrechtova J. Spectral characteristics of lignin and soluble phenolics in the near infrared - a comparative study. Int J Remote Sens. 2002;23:3039–3055.
Semerci A, Semerci H, Çalişkan B, Çiçek N, Ekmekçi Y, Mencuccini M. Morphological and physiological responses to drought stress of European provenances of Scots pine. Eur J Forest Res. 2017;136:91–104.
Carter GA. Primary and secondary effects of water content on the spectral reflectance of leaves. Am J Bot. 1991;78:916–924.
Sims DA, Gamon JA. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: A comparison of indices based on liquid water and chlorophyll absorption features. Remote Sens Environ. 2003;84(4):526–537.
Seidel H, Menzel A. Above-ground dimensions and acclimation explain variation in drought mortality of scots pine seedlings from various provenances. Front Plant Sci. 2016;7:1014. PubMed PMC
Seidel H, Schunk C, Matiu M, Menzel A. Diverging drought resistance of scots pine provenances revealed by infrared thermography. Front Plant Sci. 2016;7:1247. PubMed PMC
Seidel H, Matiu M, Menzel A. Compensatory growth of Scots pine seedlings mitigates impacts of multiple droughts within and across years. Front Plant Sci. 2019;10:519. PubMed PMC
Hejtmánek J, Stejskal J, Čepl J, Lhotáková Z, Korecký J, Krejzková A, Dvořák J, Gezan SA. Revealing the complex relationship among hyperspectral reflectance, photosynthetic pigments, and growth in Norway spruce ecotypes. Front Plant Sci. 2022;13: Article 721064. PubMed PMC
Lambeth CC. Juvenile-mature correlations in Pinaceae and implications for early selection. For Sci. 1980;26(4):571–580.
Niinemets Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol Res. 2010;25:693–714.
Kubínová Z, Janáček J, Lhotáková Z, Šprtová M, Kubínová L, Albrechtová J. Norway spruce needle size and cross section shape variability induced by irradiance on a macro- and microscale and CO2 concentration. Trees. 2018;32:231–244.
Madritch MD, Kingdon CC, Singh A, Mock KE, Lindroth RL, Townsend PA. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales. Philos Trans R Soc Lond B Biol Sci. 2014;369(1643):20130194–20130194. PubMed PMC
Deacon NJ, Grossman JJ, Schweiger AK, Armour I, Cavender-Bares J. Genetic, morphological, and spectral characterization of relictual Niobrara River hybrid aspens ( Populus × smithii ). Am J Bot. 2017;104(12):1878–1890. PubMed
Grattapaglia D. Breeding forest trees by genomic selection: Current progress and the way forward. In: Tuberosa R, Graner A, Frison E, editorsGenomics of Plant Genetic Resources: Volume 1 Dordrecht, the Netherlands: Managing, Sequencing and Mining Genetic Resources, Springer; 2014. p. 651–682.
Czyż EA, Guillén Escribà C, Wulf H, Tedder A, Schuman MC, Schneider FD, Schaepman ME. Intraspecific genetic variation of a Fagus sylvatica population in a temperate forest derived from airborne imaging spectroscopy time series. Ecol Evol. 2020;10:7419–7430. PubMed PMC
Rocchini D, Balkenhol N, Carter GA, Foody GM, Gillespie TW, He KS, Kark S, Levin N, Lucas K, Luoto M, et al. . Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges. Eco Inform. 2010;5:318–329.
Rincent R, Charpentier J-P, Faivre-Rampant P, Paux E, Le Gouis J, Bastien C, Segura V. Phenomic selection is a low-cost and high-throughput method based on indirect predictions: Proof of concept on wheat and poplar. G3. 2018;8(12):3961–3972. PubMed PMC
Krause MR, González-Pérez L, Crossa J, Pérez-Rodríguez P, Montesinos-López O, Singh RP, Dreisigacker S, Poland J, Rutkoski J, Sorrells M, et al. . Hyperspectral reflectance-derived relationship matrices for genomic prediction of grain yield in wheat. G3. 2019;9(4):1231–1247. PubMed PMC
Grubinger S, Coops NC, O'Neill GA. Picturing local adaptation: Spectral and structural traits from drone remote sensing reveal clinal responses to climate transfer in common-garden trials of interior spruce (Picea engelmannii × glauca). Glob Chang Biol. 2023;29(17):4842–4860. PubMed