The Effect of Leaf Stacking on Leaf Reflectance and Vegetation Indices Measured by Contact Probe during the Season

. 2017 May 24 ; 17 (6) : . [epub] 20170524

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28538685

The aims of the study were: (i) to compare leaf reflectance in visible (VIS) (400-700 nm), near-infrared (NIR) (740-1140 nm) and short-wave infrared (SWIR) (2000-2400 nm) spectral ranges measured monthly by a contact probe on a single leaf and a stack of five leaves (measurement setup (MS)) of two broadleaved tree species during the vegetative season; and (ii) to test if and how selected vegetation indices differ under these two MS. In VIS, the pigment-related spectral region, the effect of MS on reflectance was negligible. The major influence of MS on reflectance was detected in NIR (up to 25%), the structure-related spectral range; and weaker effect in SWIR, the water-related spectral range. Vegetation indices involving VIS wavelengths were independent of MS while indices combining wavelengths from both VIS and NIR were MS-affected throughout the season. The effect of leaf stacking contributed to weakening the correlation between the leaf chlorophyll content and selected vegetation indices due to a higher leaf mass per area of the leaf sample. The majority of MS-affected indices were better correlated with chlorophyll content in both species in comparison with MS-unaffected indices. Therefore, in terms of monitoring leaf chlorophyll content using the contact probe reflectance measurement, these MS-affected indices should be used with caution, as discussed in the paper. If the vegetation indices are used for assessment of plant physiological status in various times of the vegetative season, then it is essential to take into consideration their possible changes induced by the particular contact probe measurement setup regarding the leaf stacking.

Zobrazit více v PubMed

Campbell P.K.E., Rock B.N., Martin M.E., Neefus C.D., Irons J.R., Middleton E.M., Albrechtova J. Detection of initial damage in Norway spruce canopies using hyperspectral airborne data. Int. J. Remote Sens. 2004;25:5557–5584. doi: 10.1080/01431160410001726058. DOI

Mišurec J., Kopačková V., Lhotáková Z., Hanuš J., Weyermann J., Entcheva-Campbell P., Albrechtová J. Utilization of hyperspectral image optical indices to assess the Norway spruce forest health status. J. Appl. Remote Sens. 2012;6:063545.

Kopačková V., Lhotáková Z., Oulehle F., Albrechtová J. Assessing forest health via linking the geochemical properties of a soil profile with the biochemical parameters of vegetation. Int. J. Environ. Sci. Technol. 2015;12:1987–2002. doi: 10.1007/s13762-014-0602-3. DOI

Rapaport T., Hochberg U., Rachmilevitch S., Karnieli A. The Effect of Differential Growth Rates across Plants on Spectral Predictions of Physiological Parameters. PLoS ONE. 2014;9:e88930. doi: 10.1371/journal.pone.0088930. PubMed DOI PMC

Croft H., Chen J.M., Zhang Y. The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures. Ecol. Complex. 2014;17:119–130. doi: 10.1016/j.ecocom.2013.11.005. DOI

Gates D.M., Keegan H.J., Schleter J.C., Weidner V.R. Spectral properties of plants. Appl. Opt. 1965;4:11–20. doi: 10.1364/AO.4.000011. DOI

Daughtry C.S.T., Walthall C.L., Kim M.S., De Colstoun E.B., McMurtrey J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000;74:229–239. doi: 10.1016/S0034-4257(00)00113-9. DOI

Mottus M., Sulev M., Hallik L. Seasonal Course of the Spectral Properties of Alder and Birch Leaves. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014;7:2496–2505. doi: 10.1109/JSTARS.2013.2294242. DOI

Eitel J.U.H., Gessler P.E., Smith A.M.S., Robberecht R. Suitability of existing and novel spectral indices to remotely detect water stress in Populus spp. For. Ecol. Manag. 2006;229:170–182. doi: 10.1016/j.foreco.2006.03.027. DOI

Cavender-Bares J., Meireles J.E., Couture J.J., Kaproth M.A., Kingdon C.C., Singh A., Serbin S.P., Center A., Zuniga E., Pilz G., et al. Associations of Leaf Spectra with Genetic and Phylogenetic Variation in Oaks: Prospects for Remote Detection of Biodiversity. Remote Sens. 2016;8:221. doi: 10.3390/rs8030221. DOI

Gao B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996;58:257–266. doi: 10.1016/S0034-4257(96)00067-3. DOI

Lhotakova Z., Brodsky L., Kupkova L., Kopackova V., Potuckova M., Misurec J., Klement A., Kovarova M., Albrechtova J. Detection of multiple stresses in Scots pine growing at post-mining sites using visible to near-infrared spectroscopy. Environ. Sci. Process. Impacts. 2013;15:2004–2015. PubMed

Einzmann K., Ng W.-T., Immitzer M., Pinnel N., Atzberger C. Method Analysis for Collecting and Processing in-situ Hyperspectral Needle Reflectance Data for Monitoring Norway Spruce; Methodenanalyse zur Erfassung und Prozessierung hyperspektraler in-situ Nadelreflexionsdaten zum Monitoring von Fichten. Photogramm. Fernerkund. Geoinform. 2014;2014:423–434. doi: 10.1127/1432-8364/2014/0234. DOI

Lu X., Peng H. Predicting Cherry Leaf Chlorophyll Concentrations Based on Foliar Reflectance Spectra Variables. J. Indian Soc. Remote Sens. 2015;43:109–120. doi: 10.1007/s12524-014-0397-1. DOI

Sims D.A., Gamon J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002;81:337–354. doi: 10.1016/S0034-4257(02)00010-X. DOI

Blackburn G.A. Relationships between Spectral Reflectance and Pigment Concentrations in Stacks of Deciduous Broadleaves. Remote Sens. Environ. 1999;70:224–237. doi: 10.1016/S0034-4257(99)00048-6. DOI

Jacquemoud S., Baret F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990;34:75–91. doi: 10.1016/0034-4257(90)90100-Z. DOI

Dian Y., Le Y., Fang S., Xu Y., Yao C., Liu G. Influence of Spectral Bandwidth and Position on Chlorophyll Content Retrieval at Leaf and Canopy Levels. J. Indian Soc. Remote Sens. 2016;44:583–593. doi: 10.1007/s12524-015-0537-2. DOI

Gastellu-Etchegorry J.P., Martin E., Gascon F. DART: A 3D model for simulating satellite images and studying surface radiation budget. Int. J. Remote Sens. 2004;25:73–96. doi: 10.1080/0143116031000115166. DOI

Hernández-Clemente R., Navarro-Cerrillo R.M., Zarco-Tejada P.J. Carotenoid content estimation in a heterogeneous conifer forest using narrow-band indices and PROSPECT + DART simulations. Remote Sens. Environ. 2012;127:298–315. doi: 10.1016/j.rse.2012.09.014. DOI

Huang N., Niu Z., Zhan Y., Xu S., Tappert M.C., Wu C., Huang W., Gao S., Hou X., Cai D. Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Agric. For. Meteorol. 2012;160:80–89. doi: 10.1016/j.agrformet.2012.03.005. DOI

Yi Q., Jiapaer G., Chen J., Bao A., Wang F. Different units of measurement of carotenoids estimation in cotton using hyperspectral indices and partial least square regression. ISPRS J. Photogramm. Remote Sens. 2014;91:72–84. doi: 10.1016/j.isprsjprs.2014.01.004. DOI

Liu N., Lin Z.-F., Van Devender A., Lin G.-Z., Peng C.-L., Pan X.-P., Chen S.-W., Gu Q. Spectral reflectance indices and pigment functions during leaf ontogenesis in six subtropical landscape plants. Plant Growth Regul. 2009;58:73–84. doi: 10.1007/s10725-008-9353-9. DOI

Blackburn G.A. Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sens. Environ. 1998;66:273–285. doi: 10.1016/S0034-4257(98)00059-5. DOI

Zarco-Tejada P.J., Berjón A., López-Lozano R., Miller J.R., Martín P., Cachorro V., González M.R., de Frutos A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005;99:271–287. doi: 10.1016/j.rse.2005.09.002. DOI

Kokaly R.F., Asner G.P., Ollinger S.V., Martin M.E., Wessman C.A. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 2009;113:S78–S91. doi: 10.1016/j.rse.2008.10.018. DOI

Ustin S.L., Gitelson A.A., Jacquemoud S., Schaepman M., Asner G.P., Gamon J.A., Zarco-Tejada P. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 2009;113:S67–S77. doi: 10.1016/j.rse.2008.10.019. DOI

Castro K.L., Sanchez-Azofeifa G.A. Changes in spectral properties, chlorophyll content and internal mesophyll structure of senescing Populus balsamifera and Populus tremuloides leaves. Sensors. 2008;8:51–69. doi: 10.3390/s8010051. PubMed DOI PMC

Gitelson A.A., Merzlyak M.N., Lichtenthaler H.K. Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements near 700 nm. J. Plant Physiol. 1996;148:501–508. doi: 10.1016/S0176-1617(96)80285-9. DOI

Rondeaux G., Steven M., Baret F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996;55:95–107. doi: 10.1016/0034-4257(95)00186-7. DOI

Main R., Cho M.A., Mathieu R., O’Kennedy M.M., Ramoelo A., Koch S. An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS J. Photogramm. Remote Sens. 2011;66:751–761. doi: 10.1016/j.isprsjprs.2011.08.001. DOI

Homolová L., Malenovský Z., Clevers J.G.P.W., García-Santos G., Schaepman M.E. Review of optical-based remote sensing for plant trait mapping. Ecol. Complex. 2013;15:1–16. doi: 10.1016/j.ecocom.2013.06.003. DOI

Le Maire G., François C., Soudani K., Berveiller D., Pontailler J.-Y., Bréda N., Genet H., Davi H., Dufrêne E. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 2008;112:3846–3864. doi: 10.1016/j.rse.2008.06.005. DOI

González-Fernández A.B., Rodríguez-Pérez J.R., Marcelo V., Valenciano J.B. Using field spectrometry and a plant probe accessory to determine leaf water content in commercial vineyards. Agric. Water Manag. 2015;156:43–50. doi: 10.1016/j.agwat.2015.03.024. DOI

Baránková B., Lazár D., Nauš J. Analysis of the effect of chloroplast arrangement on optical properties of green tobacco leaves. Remote Sens. Environ. 2016;174:181–196. doi: 10.1016/j.rse.2015.12.011. DOI

Nakaji T., Kosugi Y., Takanashi S., Niiyama K., Noguchi S., Tani M., Oguma H., Nik A.R., Kassim A.R. Estimation of light-use efficiency through a combinational use of the photochemical reflectance index and vapor pressure deficit in an evergreen tropical rainforest at Pasoh, Peninsular Malaysia. Remote Sens. Environ. 2014;150:82–92. doi: 10.1016/j.rse.2014.04.021. DOI

Dillen S.Y., de Beeck M.O., Hufkens K., Buonanduci M., Phillips N.G. Seasonal patterns of foliar reflectance in relation to photosynthetic capacity and color index in two co-occurring tree species, Quercus rubra and Betula papyrifera. Agric. For. Meteorol. 2012;160:60–68. doi: 10.1016/j.agrformet.2012.03.001. DOI

Fréchette E., Wong C.Y.S., Junker L.V., Chang C.Y.-Y., Ensminger I. Zeaxanthin-independent energy quenching and alternative electron sinks cause a decoupling of the relationship between the photochemical reflectance index (PRI) and photosynthesis in an evergreen conifer during spring. J. Exp. Bot. 2015;66:7309–7323. doi: 10.1093/jxb/erv427. PubMed DOI PMC

Bartlett M.K., Ollinger S.V., Hollinger D.Y., Wicklein H.F., Richardson A.D. Canopy-scale relationships between foliar nitrogen and albedo are not observed in leaf reflectance and transmittance within temperate deciduous tree species. Botany. 2011;89:491–497. doi: 10.1139/b11-037. DOI

Frouz J., Keplin B., Pižl V., Tajovský K., Starý J., Lukešová A., Nováková A., Balík V., Háněl L., Materna J., et al. Soil biota and upper soil layer development in two contrasting post-mining chronosequences. Ecol. Eng. 2001;17:275–284. doi: 10.1016/S0925-8574(00)00144-0. DOI

Mobasheri M.R., Fatemi S.B. Leaf Equivalent Water Thickness assessment using reflectance at optimum wavelengths. Theor. Exp. Plant Physiol. 2013;25:196–202. doi: 10.1590/S2197-00252013005000001. DOI

Wellburn A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI

Liu J.G., Moore J.M. Hue image RGB colour composition. A simple technique to suppress shadow and enhance spectral signature. Int. J. Remote Sens. 1990;11:1521–1530. doi: 10.1080/01431169008955110. DOI

Carter G.A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int. J. Remote Sens. 1994;15:697–703. doi: 10.1080/01431169408954109. DOI

Gitelson A.A., Gritz Y., Merzlyak M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003;160:271–282. doi: 10.1078/0176-1617-00887. PubMed DOI

Zarco-Tejada P.J., Miller J.R., Noland T.L., Mohammed G.H., Sampson P.H. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2001;39:1491–1507. doi: 10.1109/36.934080. DOI

Datt B. A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests using Eucalyptus Leaves. J. Plant Physiol. 1999;154:30–36. doi: 10.1016/S0176-1617(99)80314-9. DOI

Le Maire G., François C., Dufrêne E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens. Environ. 2004;89:1–28. doi: 10.1016/j.rse.2003.09.004. DOI

Jordan C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology. 1969;50:663–666. doi: 10.2307/1936256. DOI

Gitelson A., Merzlyak M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994;143:286–292. doi: 10.1016/S0176-1617(11)81633-0. DOI

Smith R.C.G., Adams J., Stephens D.J., Hick P.T., Smith R.C.G., Adams J., Stephens D.J., Hick P.T. Forecasting wheat yield in a Mediterranean-type environment from the NOAA satellite. Crop Pasture Sci. 1995;46:113–125. doi: 10.1071/AR9950113. DOI

Maccioni A., Agati G., Mazzinghi P. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. J. Photochem. Photobiol. B. 2001;61:52–61. doi: 10.1016/S1011-1344(01)00145-2. PubMed DOI

Haboudane D., Miller J.R., Pattey E., Zarco-Tejada P.J., Strachan I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004;90:337–352. doi: 10.1016/j.rse.2003.12.013. DOI

Wu C., Niu Z., Tang Q., Huang W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008;148:1230–1241. doi: 10.1016/j.agrformet.2008.03.005. DOI

McMurtrey J.E., Chappelle E.W., Kim M.S., Meisinger J.J., Corp L.A. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements. Remote Sens. Environ. 1994;47:36–44. doi: 10.1016/0034-4257(94)90125-2. DOI

Mutanga O., Skidmore A.K. Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote Sens. 2004;25:3999–4014. doi: 10.1080/01431160310001654923. DOI

Qi J., Chehbouni A., Huete A.R., Kerr Y.H., Sorooshian S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994;48:119–126. doi: 10.1016/0034-4257(94)90134-1. DOI

Hunt E.R., Rock B.N. Detection of changes in leaf water content using Near- and Middle-Infrared reflectances. Remote Sens. Environ. 1989;30:43–54.

Chen J.M. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 1996;22:229–242. doi: 10.1080/07038992.1996.10855178. DOI

Dash J., Curran P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004;25:5403–5413. doi: 10.1080/0143116042000274015. DOI

Serrano L., Gamon J.A., Berry J. Estimation of leaf area with an integrating sphere. Tree Physiol. 1997;17:571–576. doi: 10.1093/treephys/17.8-9.571. PubMed DOI

Rouse J.W., Haas R.H., Schell J.A., Deering D.W., Harlan J.C. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation. NASA; Greenbelt, MD, USA: 1974. p. 371. NASA/GSFC Type III Final Report.

Stimson H.C., Breshears D.D., Ustin S.L., Kefauver S.C. Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma. Remote Sens. Environ. 2005;96:108–118. doi: 10.1016/j.rse.2004.12.007. DOI

Chen D., Huang J., Jackson T.J. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sens. Environ. 2005;98:225–236. doi: 10.1016/j.rse.2005.07.008. DOI

Wang L., Qu J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 2007;34:L20405. doi: 10.1029/2007GL031021. DOI

Bravo C., Moshou D., Oberti R., West J., McCartney A., Bodria L., Ramon H. Foliar Disease Detection in the Field Using Optical Sensor Fusion. J. Sci. Res. Dev. 2004;6:1–14.

Gamon J.A., Peñuelas J., Field C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992;41:35–44. doi: 10.1016/0034-4257(92)90059-S. DOI

Hernández-Clemente R., Navarro-Cerrillo R.M., Suárez L., Morales F., Zarco-Tejada P.J. Assessing structural effects on PRI for stress detection in conifer forests. Remote Sens. Environ. 2011;115:2360–2375. doi: 10.1016/j.rse.2011.04.036. DOI

Garrity S.R., Eitel J.U.H., Vierling L.A. Disentangling the relationships between plant pigments and the photochemical reflectance index reveals a new approach for remote estimation of carotenoid content. Remote Sens. Environ. 2011;115:628–635. doi: 10.1016/j.rse.2010.10.007. DOI

Roujean J.-L., Breon F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995;51:375–384. doi: 10.1016/0034-4257(94)00114-3. DOI

Guyot G., Baret F. Utilisation de la Haute Resolution Spectrale pour Suivre L’etat des Couverts Vegetaux; Proceedings of the Spectral Signature of Objects in Remote Sensing; Aussois, France. 18–22 January 1988; p. 279.

Curran P.J., Windham W.R., Gholz H.L. Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. Tree Physiol. 1995;15:203–206. doi: 10.1093/treephys/15.3.203. PubMed DOI

Peñuelas J., Filella I., Lloret P., Muñoz F., Vilajeliu M. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 1995;16:2727–2733. doi: 10.1080/01431169508954588. DOI

Zarco-Tejada P.J., Miller J.R. Land cover mapping at BOREAS using red edge spectral parameters from CASI imagery. J. Geophys. Res. 1999;104:27921–27933. doi: 10.1029/1999JD900161. DOI

Gitelson A.A., Merzlyak M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997;18:2691–2697. doi: 10.1080/014311697217558. DOI

Zarco-Tejada P., Rueda C., Ustin S. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sens. Environ. 2003;85:109–124. doi: 10.1016/S0034-4257(02)00197-9. DOI

Haboudane D., Miller J.R., Tremblay N., Zarco-Tejada P.J., Dextraze L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002;81:416–426. doi: 10.1016/S0034-4257(02)00018-4. DOI

Broge N.H., Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2000;76:156–172. doi: 10.1016/S0034-4257(00)00197-8. DOI

Gitelson A.A., Kaufman Y.J., Stark R., Rundquist D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002;80:76–87. doi: 10.1016/S0034-4257(01)00289-9. DOI

Vogelmann J.E., Rock B.N., Moss D.M. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens. 1993;14:1563–1575. doi: 10.1080/01431169308953986. DOI

Peñuelas J., Filella I., Biel C., Serrano L., Savé R. The reflectance at the 950–970 nm region as an indicator of plant water status. Int. J. Remote Sens. 1993;14:1887–1905. doi: 10.1080/01431169308954010. DOI

Buschmann C., Lenk S., Lichtenthaler H.K. Reflectance spectra and images of green leaves with different tissue structure and chlorophyll content. Isr. J. Plant Sci. 2012;60:49–64. doi: 10.1560/IJPS.60.1-2.49. DOI

Slaton M.R., Hunt E.R., Smith W.K. Estimating near-infrared leaf reflectance from leaf structural characteristics. Am. J. Bot. 2001;88:278–284. doi: 10.2307/2657019. PubMed DOI

Smith W.K., Vogelmann T.C., DeLucia E.H., Bell D.T., Shepherd K.A. Leaf Form and Photosynthesis. BioScience. 1997;47:785–793. doi: 10.2307/1313100. DOI

Cordón G.B., Lagorio M.G. Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients. Photochem. Photobiol. Sci. 2007;6:873–882. doi: 10.1039/b617685b. PubMed DOI

Stuckens J., Verstraeten W.W., Delalieux S., Swennen R., Coppin P. A dorsiventral leaf radiative transfer model: Development, validation and improved model inversion techniques. Remote Sens. Environ. 2009;113:2560–2573. doi: 10.1016/j.rse.2009.07.014. DOI

Cheng T., Rivard B., Sánchez-Azofeifa A.G., Féret J.-B., Jacquemoud S., Ustin S.L. Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis. ISPRS J. Photogramm. Remote Sens. 2014;87:28–38. doi: 10.1016/j.isprsjprs.2013.10.009. DOI

Féret J.-B., François C., Gitelson A., Asner G.P., Barry K.M., Panigada C., Richardson A.D., Jacquemoud S. Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling. Remote Sens. Environ. 2011;115:2742–2750. doi: 10.1016/j.rse.2011.06.016. DOI

Potůčková M., Červená L., Kupková L., Lhotáková Z., Lukeš P., Hanuš J., Novotný J., Albrechtová J. Comparison of Reflectance Measurements Acquired with a Contact Probe and an Integration Sphere: Implications for the Spectral Properties of Vegetation at a Leaf Level. Sensors. 2016;16:1801. doi: 10.3390/s16111801. PubMed DOI PMC

Jacquemoud S., Verhoef W., Baret F., Bacour C., Zarco-Tejada P.J., Asner G.P., François C., Ustin S.L. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009;113:S56–S66. doi: 10.1016/j.rse.2008.01.026. DOI

Guanter L., Estellés V., Moreno J. Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data. Remote Sens. Environ. 2007;109:54–65. doi: 10.1016/j.rse.2006.12.005. DOI

Verhoef W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984;16:125–141. doi: 10.1016/0034-4257(84)90057-9. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Making the Genotypic Variation Visible: Hyperspectral Phenotyping in Scots Pine Seedlings

. 2023 ; 5 () : 0111. [epub] 20231114

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...