Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
755617
European Research Council - International
PubMed
36081834
PubMed Central
PMC7613341
DOI
10.1007/s10712-018-9478-y
Knihovny.cz E-zdroje
- Klíčová slova
- Imaging spectroscopy, Inversion, Machine learning, Parametric and nonparametric regression, Radiative transfer models, Retrieval, Uncertainties, Vegetation properties,
- Publikační typ
- časopisecké články MeSH
An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given.
Department of Geography Swansea University Swansea SA2 8PP UK
Department of Geography University College London Pearson Building Gower Street WC1E 6BT London UK
Image Processing Laboratory Parc Científic Universitat de València Paterna València 46980 Spain
Zobrazit více v PubMed
Adam E, Mutanga O, Abdel-Rahman E, Ismail R. Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression. Int J Remote Sens. 2014;35(2):693–714.
Addink E, De Jong S, Pebesma E. The importance of scale in object-based mapping of vegetation parameters with hyperspectral imagery. Photogramm Eng Remote Sens. 2007;73(8):905–912.
Ali A, Skidmore A, Darvishzadeh R, van Duren I, Holzwarth S, Mueller J. Retrieval of forest leaf functional traits from HySpex imagery using radiative transfer models and continuous wavelet analysis. ISPRS J Photogramm Remote Sens. 2016;122:68–80.
Alton P, Ellis R, Los S, North P. Improved global simulations of gross primary product based on a separate and explicit treatment of diffuse and direct sunlight. J Geophys Res Atmos. 2007;112:D02108
Arellano P, Tansey K, Balzter H, Tellkamp M. Plant family-specific impacts of petroleum pollution on biodiversity and leaf chlorophyll content in the Amazon rainforest of Ecuador. PLoS ONE. 2017;12(1):e0169867. PubMed PMC
Arenas-García J, Camps-Valls G. Efficient kernel orthonormalized PLS for remote sensing applications. IEEE Trans Geosci Remote Sens. 2008;46(10):2872–2881.
Ashourloo D, Aghighi H, Matkan A, Mobasheri M, Rad A. An investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurement. IEEE J Select Top Appl Earth Observ Remote Sens. 2016;9(9):4344–4351.
Atzberger C, Guérif M, Baret F, Werner W. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput Electron Agric. 2010;73(2):165–173.
Atzberger C, Darvishzadeh R, Immitzer M, Schlerf M, Skidmore A, le Maire G. Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. Int J Appl Earth Observ Geoinf. 2015;43:19–31.
Bacour C, Baret F, Béal D, Weiss M, Pavageau K. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: principles and validation. Remote Sens Environ. 2006;105(4):313–325.
Balzarolo M, Vescovo L, Hammerle A, Gianelle D, Papale D, Tomelleri E, Wohlfahrt G. On the relationship between ecosystem-scale hyperspectral reflectance and CO2 exchange in European mountain grasslands. Biogeosciences. 2015;12(10):3089–3108.
Banskota A, Wynne R, Thomas V, Serbin S, Kayastha N, Gastellu-Etchegorry J, Townsend P. Investigating the utility of wavelet transforms for inverting a 3-D radiative transfer model using hyperspec-tral data to retrieve forest LAI. Remote Sens. 2013;5(6):2639–2659.
Banskota A, Serbin S, Wynne R, Thomas V, Falkowski M, Kayastha N, Gastellu-Etchegorry JP, Townsend P. An LUT-based inversion of DART model to estimate forest LAI from hyperspectral data. IEEE J Sel Top Appl Earth Observ Remote Sens. 2015;8(6):3147–3160.
Bao S, Cao C, Chen W, Tian H. Spectral features and separability of alpine wetland grass species. Spectrosc Lett. 2017;50(5):245–256.
Baranoski G, Rokne J. A practical approach for estimating the red edge position of plant leaf reflectance. Int J Remote Sens. 2005;26(3):503–521.
Baret F, Buis S. In: Advances in land remote sensing: system, modeling, inversion and application. Liang S, editor. Springer; New York: 2008. Estimating canopy characteristics from remote sensing observations. Review of methods and associated problems; pp. 171–200.
Baret F, Weiss M, Lacaze R, Camacho F, Makhmara H, Pacholcyzk P, Smets B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 1: principles of development and production. Remote Sens Environ. 2013;137:299–309.
Barton CVM, North P. Remote sensing of canopy light use efficiency using the photochemical reflectance index: model and sensitivity analysis. Remote Sens Environ. 2001;78(3):264–273.
Bayat B, van der Tol C, Verhoef W. Remote sensing of grass response to drought stress using spectroscopic techniques and canopy reflectance model inversion. Remote Sens. 2016;8(7):557
Belgiu M, Drăguţ L. Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens. 2016;114:24–31.
Berk A, Anderson G, Acharya P, Bernstein L, Muratov L, Lee J, Fox M, Adler-Golden S, Chetwynd J, Hoke M, Lockwood R, et al. MODTRAN™ 5: 2006 update. 2006;6233 II.
Botha E, Leblon B, Zebarth B, Watmough J. Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model. Int J Appl Earth Observ Geoinf. 2007;9(4):360–374.
Bratsch S, Epstein H, Buchhorn M, Walker D, Landes H. Relationships between hyperspectral data and components of vegetation biomass in Low Arctic tundra communities at Ivotuk, Alaska. Environ Res Lett. 2017;12(2):025003
Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–140.
Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
Breiman L, Friedman J, Stone C, Olshen R. Classification and regression trees The Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis; London: 1984.
Broge NH, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ. 2001;76(2):156–172.
Broomhead DS, Lowe D. Radial basis functions, multi-variable functional interpolation and adaptive networks Tech rep. Royal Signals and Radar Establishment Malvern (United Kingdom); 1988.
Buchhorn M, Walker DA, Heim B, Raynolds MK, Epstein HE, Schwieder M. Ground-based hyperspectral characterization of alaska tundra vegetation along environmental gradients. Remote Sens. 2013;5(8):3971–4005.
Burden F, Winkler D. Robust QSAR models using bayesian regularized neural networks. J Med Chem. 1999;42(16):3183–3187. PubMed
Bye I, North P, Los S, Kljun N, Rosette J, Hopkinson C, Chasmer L, Mahoney C. Estimating forest canopy parameters from satellite waveform LiDAR by inversion of the FLIGHT three-dimensional radiative transfer model. Remote Sens Environ. 2017;188:177–189.
Camps-Valls G, Verrelst J, Muñoz-Marí J, Laparra V, Mateo-Jiménez F, Gómez-Dans J. A survey on Gaussian processes for earth observation data analysis. IEEE Geosci Remote Sens Mag. 2016;4(2):41–57.
Capolupo A, Kooistra L, Berendonk C, Boccia L, Suomalainen J. Estimating plant traits of grasslands from UAV-acquired hyperspectral images: a comparison of statistical approaches. ISPRS Int J Geo-Inf. 2015;4(4):2792–2820.
Chen B, Wu Z, Wang J, Dong J, Guan L, Chen J, Yang K, Xie G. Spatio-temporal prediction of leaf area index of rubber plantation using HJ-1A/1B CCD images and recurrent neural network. ISPRS J Photogramm Remote Sens. 2015;102:148–160.
Cho MA, Skidmore AK. A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation method. Remote Sens Environ. 2006;101(2):181–193.
Cho M, Skidmore A, Corsi F, van Wieren S, Sobhan Ib. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int J Appl Earth Observ Geoinf. 2007;9(4):414–424.
Cho MA, Skidmore AK, Atzberger C. Towards red-edge positions less sensitive to canopy biophysical parameters for leaf chlorophyll estimation using properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves (SAILH) simulated data. Int J Remote Sens. 2008;29(8):2241–2255.
Clark RN, Roush TL. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J Geophys Res Solid Earth. 1984;89(B7):6329–6340.
Clevers J. Beyond NDVI: extraction of biophysical variables from remote sensing imagery. Remote Sens Digital Image Process. 2014;18:363–381.
Clevers J, Kooistra L. Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content. IEEE J Sel Top Appl Earth Observ Remote Sens. 2012;5(2):574–583.
Clevers JGPW, Kooistra L, Salas EAL. Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data. Int J Remote Sens. 2004;25(19):3883–3895.
Coops NC, Smith ML, Martin M, Ollinger SV. Prediction of eucalypt foliage nitrogen content from satellite-derived hyperspectral data. IEEE Trans Geosci Remote Sens. 2003;41(6):1338–1346.
Cressie N, Calder C, Clark J, Ver Hoef J, Wikle C. Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecol Appl. 2009;19(3):553–570. PubMed
Danner M, Berger K, Wocher M, Mauser W, Hank T. Retrieval of biophysical crop variables from multi-angular canopy spectroscopy. Remote Sens. 2017;9(7):726
Darvishzadeh R, Skidmore A, Schlerf M, Atzberger C. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sens Environ. 2008;112(5):2592–2604.
Darvishzadeh R, Matkan AA, Dashti Ahangar A. Inversion of a radiative transfer model for estimation of rice canopy chlorophyll content using a lookup-table approach. IEEE J Sel Top Appl Earth Observ Remote Sens. 2012;99:1–9.
Dawson T, Curran P, Plummer S. LIBERTY—Modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sens Environ. 1998;65(1):50–60.
Delegido J, Alonso L, González G, Moreno J. Estimating chlorophyll content of crops from hyper-spectral data using a normalized area over reflectance curve (NAOC) Int J Appl Earth Observ Geoinf. 2010;12(3):165–174.
Delegido J, Verrelst J, Alonso L, Moreno J. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors. 2011;11(7):7063–7081. PubMed PMC
Delegido J, Verrelst J, Meza C, Rivera J, Alonso L, Moreno J. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur J Agron. 2013;46:42–52.
Dietz A, Kuenzer C, Gessner U, Dech S. Remote sensing of snow—a review of available methods. Int J Remote Sens. 2012;33(13):4094–4134.
Disney M, Lewis P, Saich P. 3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains. Remote Sens Environ. 2006;100(1):114–132.
Doktor D, Lausch A, Spengler D, Thurner M. Extraction of plant physiological status from hyper-spectral signatures using machine learning methods. Remote Sens. 2014;6(12):12247–12274.
Dorigo WA, Zurita-Milla R, de Wit AJW, Brazile J, Singh R, Schaepman ME. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int J Appl Earth Observ Geoinf. 2007;9(2):165–193.
Dorigo W, Richter R, Baret F, Bamler R, Wagner W. Enhanced automated canopy characterization from hyperspectral data by a novel two step radiative transfer model inversion approach. Remote Sens. 2009;1(4):1139–1170.
Draper NR, Smith H. Applied regression analysis. Wiley; New York: 2014.
Dreccer M, Barnes L, Meder R. Quantitative dynamics of stem water soluble carbohydrates in wheat can be monitored in the field using hyperspectral reflectance. Field Crops Res. 2014;159:70–80.
Drusch M, Moreno J, Del Bello U, Franco R, Goulas Y, Huth A, Kraft S, Middleton EM, Miglietta F, Mohammed G, et al. The fluorescence explorer mission concept-ESA’s earth explorer 8. IEEE Trans Geosci Remote Sens. 2017;55(3):1273–1284.
Du L, Shi S, Yang J, Sun J, Gong W. Using different regression methods to estimate leaf nitrogen content in rice by fusing hyperspectral LiDAR data and laser-induced chlorophyll fluorescence data. Remote Sens. 2016;8(6):526
Duan SB, Li ZL, Wu H, Tang BH, Ma L, Zhao E, Li C. Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data. Int J Appl Earth Observ Geoinf. 2014;26(1):12–20.
Elvidge CD, Chen Z. Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sens Environ. 1995;54(1):38–48.
Favennec Y, Le Hardy D, Dubot F, Rousseau B, Rousse D. Some speed-up strategies for solving inverse radiative transfer problems. J Phys Conf Ser. 2016;676(1):012006
Fei Y, Jiulin S, Hongliang F, Zuofang Y, Jiahua Z, Yunqiang Z, Kaishan S, Zongming W, Maogui H. Comparison of different methods for corn LAI estimation over northeastern China. Int J Appl Earth Observ Geoinf. 2012;18:462–471.
Feilhauer H, Asner GP, Martin RE. Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sens Environ. 2015;164:57–65.
Feilhauer H, Somers B, van der Linden S. Optical trait indicators for remote sensing of plant species composition: predictive power and seasonal variability. Ecol Indic. 2017;73:825–833.
Feng H, Yang F, Li Z, Yang G, Guo J, He P, Wang Y. Hyperspectral estimation of leaf total phosphorus content in apple tree based on optimal weights combination model. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng. 2016;32(7):173–180.
Feret JB, François C, Asner GP, Gitelson AA, Martin RE, Bidel LPR, Ustin SL, le Maire G, Jacquemoud S. PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens Environ. 2008;112(6):3030–3043.
Foster A, Kakani V, Mosali J. Estimation of bioenergy crop yield and N status by hyperspectral canopy reflectance and partial least square regression. Precis Agric. 2017;18(2):192–209.
Francl L, Panigrahi S. Artificial neural network models of wheat leaf wetness. Agric For Meteorol. 1997;88(1-4):57–65.
Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting. Ann Stat. 2000;28(2):337–407.
Fu Y, Yang G, Feng H, Xu X, Song X, Wang J. Comparison of winter wheat LAI estimation methods based on hyperspectral dimensionality reduction and vegetation index. Nongye Gongcheng Xuebao/ Trans Chin Soc Agric Eng. 2012;28(23):107–113.
Gastellu-Etchegorry J, Demarez V, Pinel V, Zagolski F. Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sens Environ. 1996;58(2):131–156.
Gastellu-Etchegorry J, Guillevic P, Zagolski F, Demarez V, Trichon V, Deering D, Leroy M. Modeling BRF and radiation regime of boreal and tropical forests: I BRF. Remote Sens Environ. 1999;68(3):281–316.
Gastellu-Etchegorry J, Gascon F, Esteve P. An interpolation procedure for generalizing a look-up table inversion method. Remote Sens Environ. 2003;87(1):55–71.
Gastellu-Etchegorry J, Martin E, Gascon F. DART: a 3D model for simulating satellite images and studying surface radiation budget. Int J Remote Sens. 2004;25(1):73–96.
Gastellu-Etchegorry JP, Yin T, Lauret N, Cajgfinger T, Gregoire T, Grau E, Feret JB, Lopes M, Guilleux J, Dedieu G, Malenovský Z, et al. Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectro-radiometer and LIDAR acquisitions of natural and urban landscapes. Remote Sens. 2015;7(2):1667–1701.
Gastellu-Etchegorry JP, Yin T, Lauret N, Grau E, Rubio J, Cook B, Morton D, Sun G. Simulation of satellite, airborne and terrestrial LiDAR with DART (I): Waveform simulation with quasi-Monte Carlo ray tracing. Remote Sens Environ. 2016;184:418–435.
Gastellu-Etchegorry J, Lauret N, Yin T, Landier L, Kallel A, Malenovský Z, Al Bitar A, Aval J, Benhmida S, Qi J, Medjdoub G, et al. DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence. IEEE J Sel Top Appl Earth Observ Remote Sens. 2017 Accepted 8 March 2017. (in press)
Geladi P, Kowalski B. Partial least-squares regression: a tutorial. Analytica Chimica Acta. 1986;185(C):1–17.
Gewali U, Monteiro S, Saber E. Machine learning based hyperspectral image analysis: a survey. 2018:arXiv:180208701
Gianelle D, Guastella F. Nadir and off-nadir hyperspectral field data: strengths and limitations in estimating grassland biophysical characteristics. Int J Remote Sens. 2007;28(7):1547–1560.
Glenn E, Huete A, Nagler P, Nelson S. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors. 2008;8(4):2136–2160. PubMed PMC
Gómez-Chova L, Muñoz-Marí J, Laparra V, Malo-López J, Camps-Valls G. Optical remote sensing. Springer; Berlin: 2011. A review of kernel methods in remote sensing data analysis; pp. 171–206.
Gómez-Dans JL, Lewis PE, Disney M. Efficient emulation of radiative transfer codes using gaussian processes and application to land surface parameter inferences. Remote Sens. 2016;8(2):119
Gonsamo A. Normalized sensitivity measures for leaf area index estimation using three-band spectral vegetation indices. Int J Remote Sens. 2011;32(7):2069–2080.
Govaerts YM, Verstraete MM. Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media. IEEE Trans Geosci Remote Sens. 1998;36(2):493–505.
Grau E, Gastellu-Etchegorry JP. Radiative transfer modeling in the Earth-Atmosphere system with DART model. Remote Sens Environ. 2013;139:149–170.
Guanter L, Kaufmann H, Segl K, Foerster S, Rogass C, Chabrillat S, Kuester T, Hollstein A, Rossner G, Chlebek C, Straif C, et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens. 2015;7(7):8830
Guillevic P, Gastellu-Etchegorry J, Demarty J, Prévot L. Thermal infrared radiative transfer within three-dimensional vegetation covers. J Geophys Res Atmos. 2003 doi: 10.1029/2002JD002247. DOI
Han ZY, Zhu XC, Fang XY, Wang ZY, Wang L, Zhao GX, Jiang YM. Hyperspectral estimation of apple tree canopy LAI based on SVM and RF regression. Guang Pu Xue Yu Guang Pu Fen Xi/Spec-trosc Spectr Anal. 2016;36(3):800–805. PubMed
Hancock S, Lewis P, Foster M, Disney M, Muller JP. Measuring forests with dual wavelength lidar: a simulation study over topography. Agric For Meteorol. 2012;161:123–133.
Hansen PM, Schjoerring JK. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ. 2003;86(4):542–553.
Harris A, Charnock R, Lucas R. Hyperspectral remote sensing of peatland floristic gradients. Remote Sens Environ. 2015;162:99–111.
Haykin S. Neural networks—a comprehensive foundation. 2nd edn. Prentice Hall; Upper Saddle: 1999.
He R, Qiao X, Jiang J, Guo H. Retrieving canopy leaf total nitrogen content of winter wheat by continuous wavelet transform. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng. 2015;31(2):141–146.
Heiskanen J, Rautiainen M, Stenberg P, Mõttus M, Vesanto VH. Sensitivity of narrowband vegetation indices to boreal forest LAI, reflectance seasonality and species composition. ISPRS J Photogramm Remote Sens. 2013;78:1–14.
Hernández-Clemente R, North P, Hornero A, Zarco-Tejada P. Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure. Remote Sens Environ. 2017;193:165–179.
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–1780. PubMed
Homolová L, Janoutová R, Malenovský Z. Evaluation of various spectral inputs for estimation of forest biochemical and structural properties from airborne imaging spectroscopy data. 2016;41:961–966.
Huang Z, Turner BJ, Dury SJ, Wallis IR, Foley WJ. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens Environ. 2004;93(1):18–29.
Huang Y, Tian Q, Wang L, Geng J, Lyu C. Estimating canopy leaf area index in the late stages of wheat growth using continuous wavelet transform. J Appl Remote Sens. 2014;8(1):083517
Hughes G. On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory. 1968;14(1):55–63.
Im J, Jensen JR, Coleman M, Nelson E. Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments. Geocarto Int. 2009;24(4):293–312.
Jacquemoud S, Baret F, Andrieu B, Danson FM, Jaggard K. Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sens Environ. 1995;52(3):163–172.
Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada P, Asner G, François C, Ustin S. PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sens Environ. 2009a;113(SUPPL 1):S56–S66.
Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada P, Asner G, François C, Ustin S. PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sens Environ. 2009b;113(SUPPL 1):S56–S66.
Jay S, Bendoula R, Hadoux X, Féret JB, Gorretta N. A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy. Remote Sens Environ. 2016;177:220–236.
Jensen R, Hardin P, Hardin A. Estimating urban leaf area index (LAI) of individual trees with hyper-spectral data. Photogramm Eng Remote Sens. 2012;78(5):495–504.
Jia F, Liu G, Liu D, Zhang Y, Fan W, Xing X. Comparison of different methods for estimating nitrogen concentration in flue-cured tobacco leaves based on hyperspectral reflectance. Field Crops Res. 2013;150:108–114.
Kalacska M, Lalonde M, Moore T. Estimation of foliar chlorophyll and nitrogen content in an ombro-trophic bog from hyperspectral data: Scaling from leaf to image. Remote Sens Environ. 2015;169:270–279.
Kanke Y, Tubaña B, Dalen M, Harrell D. Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields. Precis Agric. 2016;17(5):507–530.
Karimi Y, Prasher S, Madani A, Kim S. Application of support vector machine technology for the estimation of crop biophysical parameters using aerial hyperspectral observations. Can Biosyst Eng/ Le Genie des biosystems au Canada. 2008;50:7.13–7.20.
Kattenborn T, Fassnacht F, Pierce S, Lopatin J, Grime J, Schmidtlein S. Linking plant strategies and plant traits derived by radiative transfer modelling. J Veg Sci. 2017;28(4):717–727.
Kempeneers P, Zarco-Tejada PJ, North PRJ, de Backer S, Delalieux S, Sepulcre-Cantó G, Morales F, van Aardt JAN, Sagardoy R, Coppin P, Scheunders P. Model inversion for chlorophyll estimation in open canopies from hyperspectral imagery. Int J Remote Sens. 2008;29(17–18):5093–5111.
Kiala Z, Odindi J, Mutanga O, Peerbhay K. Comparison of partial least squares and support vector regressions for predicting leaf area index on a tropical grassland using hyperspectral data. J Appl Remote Sens. 2016;10(3):036015
Kimes DS, Nelson RF, Manry MT, Fung AK. Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements. Int J Remote Sens. 1998;19(14):2639–2662.
Kira O, Nguy-Robertson A, Arkebauer T, Linker R, Gitelson A. Informative spectral bands for remote green LAI estimation in C3 and C4 crops. Agric For Meteorol. 2016;218–219:243–249.
Knox N, Skidmore A, Prins H, Asner G, van der Werff H, de Boer W, van der Waal C, de Knegt H, Kohi E, Slotow R, Grant R. Dry season mapping of savanna forage quality, using the hyperspectral Carnegie Airborne Observatory sensor. Remote Sens Environ. 2011;115(6):1478–1488.
Knyazikhin Y, Schull MA, Stenberg P, Mõttus M, Rautiainen M, Yang Y, Marshak A, Carmona PL, Kaufmann RK, Lewis P, et al. Hyperspectral remote sensing of foliar nitrogen content. Proc Natl Acad Sci. 2013;110(3):E185–E192. PubMed PMC
Koetz B, Baret F, Poilvé H, Hill J. Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens Environ. 2005;95(1):115–124.
Kováč D, Malenovský Z, Urban O, Špunda V, Kalina J, Ač A, Kaplan V, Hanuš J. Response of green reflectance continuum removal index to the xanthophyll de-epoxidation cycle in norway spruce needles. J Exp Bot. 2013;64(7):1817–1827. PubMed
Labate D, Ceccherini M, Cisbani A, De Cosmo V, Galeazzi C, Giunti L, Melozzi M, Pieraccini S, Stagi M. The PRISMA payload optomechanical design: a high performance instrument for a new hyperspectral mission. Acta Astronautica. 2009;65(9–10):1429–1436.
Laurent V, Verhoef W, Damm A, Schaepman M, Clevers J. A Bayesian object-based approach for estimating vegetation biophysical and biochemical variables from APEX at-sensor radiance data. Remote Sens Environ. 2013;139:6–17.
Laurent V, Schaepman M, Verhoef W, Weyermann J, Chávez R. Bayesian object-based estimation of LAI and chlorophyll from a simulated Sentinel-2 top-of-atmosphere radiance image. Remote Sens Environ. 2014;140:318–329.
Lazaridis DC, Verbesselt J, Robinson AP. Penalized regression techniques for prediction: a case study for predicting tree mortality using remotely sensed vegetation indices. Can J For Res. 2010;41(1):24–34.
Lazaro-Gredilla M, Titsias M, Verrelst J, Camps-Valls G. Retrieval of biophysical parameters with heteroscedastic Gaussian processes. IEEE Geosci Remote Sens Lett. 2014;11(4):838–842.
le Maire G, François C, Dufrene E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens Environ. 2004;89(1):1–28.
le Maire G, François C, Soudani K, Berveiller D, Pontailler JY, Bréda N, Genet H, Davi H, Dufrêne E. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens Environ. 2008;112(10):3846–3864.
Lee CM, Cable ML, Hook SJ, Green RO, Ustin SL, Mandl DJ, Middleton EM. An introduction to the NASA hyperspectral infrared imager (HyspIRI) mission and preparatory activities. Remote Sens Environ. 2015;167:6–19. doi: 10.1016/j.rse.2015.06.012. (Special Issue on the Hyperspectral Infrared Imager (HyspIRI)) DOI
Leonenko G, North P, Los S. Statistical distances and their applications to biophysical parameter estimation: information measures, M-estimates, and minimum contrast methods. Remote Sens. 2013;5(3):1355–1388.
Lewis P. Three-dimensional plant modelling for remote sensing simulation studies using the botanical plant modelling system. Agronomie. 1999;19(3–4):185–210.
Lewis P, Muller J. The advanced radiometric ray tracer: ararat for plant canopy reflectance simulation. Int Arch Photogramm Remote Sens. 1993;29:26–26.
Lewis P, Muller J. Botanical plant modelling for remote sensing simulation studies; 10th Annual International on Geoscience and Remote Sensing Symposium, 1990. IGARSS’90.’Remote Sensing Science for the Nineties’; 1990. pp. 1739–1742.
Li L, Zhang Q, Huang D. A review of imaging techniques for plant phenotyping. Sensors (Switzerland) 2014a;14(11):20078–20111. PubMed PMC
Li X, Liu X, Liu M, Wu L. Random forest algorithm and regional applications of spectral inversion model for estimating canopy nitrogen concentration in rice. Yaogan Xuebao/J Remote Sens. 2014b;18(4):934–945.
Li D, Cheng T, Zhou K, Zheng H, Yao X, Tian Y, Zhu Y, Cao W. WREP: a wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops. ISPRS J Photogramm Remote Sens. 2017;129:103–117.
Liang L, Di L, Zhang L, Deng M, Qin Z, Zhao S, Lin H. Estimation of crop LAI using hyperspec-tral vegetation indices and a hybrid inversion method. Remote Sens Environ. 2015;165:123–134.
Liang L, Qin Z, Zhao S, Di L, Zhang C, Deng M, Lin H, Zhang L, Wang L, Liu Z. Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method. Int J Remote Sens. 2016;37(13):2923–2949.
Lin H, Liang L, Zhang L, Du P. Wheat leaf area index inversion with hyperspectral remote sensing based on support vector regression algorithm. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng. 2013;29(11):139–146.
Liu WY, Pan J. A hyperspectral assessment model for leaf chlorophyll content of Pinus masso-niana based on neural network. Chin J Appl Ecol. 2017;28(4):1128–1136. PubMed
Locherer M, Hank T, Danner M, Mauser W. Retrieval of seasonal leaf area index from simulated EnMAP data through optimized LUT-based inversion of the PROSAIL model. Remote Sens. 2015;7(8):10321–10346.
Luo J, Huang W, Zhao J, Zhang J, Zhao C, Ma R. Detecting aphid density of winter wheat leaf using hyperspectral measurements. IEEE J Sel Top Appl Earth Observ Remote Sens. 2013;6(2):690–698.
Malenovský Z, Ufer C, Lhotakova Z, Clevers J, Schaepman M, Albrechtova J, Cudlin P. A new hyperspectral index for chlorophyll estimation of a forest canopy: area under curve normalised to maximal band depth between 650 and 725 nm. EARSeL EProc. 2006;5(2):161–172.
Malenovský Z, Homolová L, Zurita-Milla R, Lukeš P, Kaplan V, Hanuš J, Gastellu-Etchegorry JP, Schaepman ME. Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sens Environ. 2013;131:85–102.
Malenovský Z, Turnbull JD, Lucieer A, Robinson SA. Antarctic moss stress assessment based on chlorophyll content and leaf density retrieved from imaging spectroscopy data. New Phytol. 2015;208(2):608–624. PubMed
Malenovský Z, Lucieer A, King DH, Turnbull JD, Robinson SA. Unmanned aircraft system advances health mapping of fragile polar vegetation. Methods Ecol Evol. 2017;8(12):1842–1857.
Marabel M, Alvarez-Taboada F. Spectroscopic determination of aboveground biomass in grasslands using spectral transformations, support vector machine and partial least squares regression. Sensors (Switzerland) 2013;13(8):10027–10051. PubMed PMC
Mariotto I, Thenkabail P, Huete A, Slonecker E, Platonov A. Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission. Remote Sens Environ. 2013;139:291–305.
Marshall M, Thenkabail P. Biomass modeling of four leading world crops using hyperspectral narrowbands in support of HyspIRI mission. Photogramm Eng Remote Sens. 2014;80(8):757–772.
Matthes J, Knox S, Sturtevant C, Sonnentag O, Verfaillie J, Baldocchi D. Predicting landscapescale CO2 flux at a pasture and rice paddy with long-term hyperspectral canopy reflectance measurements. Biogeosciences. 2015;12(15):4577–4594.
Matthews M. A current review of empirical procedures of remote sensing in inland and nearcoastal transitional waters. Int J Remote Sens. 2011;32(21):6855–6899.
Meroni M, Colombo R, Panigada C. Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sens Environ. 2004;92(2):195–206.
Miller J, Hare E, Wu J. Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model. Remote Sens. 1990;11(10):1755–1773.
Miphokasap P, Honda K, Vaiphasa C, Souris M, Nagai M. Estimating canopy nitrogen concentration in sugarcane using field imaging spectroscopy. Remote Sens. 2012;4(6):1651–1670.
Mitchell JJ, Glenn NF, Sankey TT, Derryberry DR, Germino MJ. Remote sensing of sagebrush canopy nitrogen. Remote Sens Environ. 2012;124:217–223.
Montesano P, Rosette J, Sun G, North P, Nelson R, Dubayah R, Ranson K, Kharuk V. The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient. Remote Sens Environ. 2015;158:95–109.
Morton DC, Nagol J, Carabajal CC, Rosette J, Palace M, Cook BD, Vermote EF, Harding DJ, North PR. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature. 2014;506(7487):221–224. PubMed
Mulder V, de Bruin S, Schaepman M, Mayr T. The use of remote sensing in soil and terrain mapping—a review. Geoderma. 2011;162(1-2):1–19.
Mutanga O, Kumar L. Estimating and mapping grass phosphorus concentration in an African savanna using hyperspectral image data. Int J Remote Sens. 2007;28(21):4897–4911.
Mutanga O, Skidmore AK. Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int J Remote Sens. 2004;25(19):3999–4014.
Mutanga O, Skidmore AK, Kumar L, Ferwerda J. Estimating tropical pasture quality at canopy level using band depth analysis with continuum removal in the visible domain. Int J Remote Sens. 2005;26(6):1093–1108.
Myneni R, Maggion S, Iaquinta J, Privette J, Gobron N, Pinty B, Kimes D, Verstraete M, Williams D. Optical remote sensing of vegetation: modeling, caveats, and algorithms. Remote Sens Environ. 1995;51(1):169–188.
Neinavaz E, Skidmore A, Darvishzadeh R, Groen T. Retrieval of leaf area index in different plant species using thermal hyperspectral data. ISPRS J Photogramm Remote Sens. 2016;119:390–401.
Neumann C, Förster M, Kleinschmit B, Itzerott S. Utilizing a PLSR-based band-selection procedure for spectral feature characterization of floristic gradients. IEEE J Sel Top Appl Earth Observ Remote Sens. 2016;9(9):3982–3996.
North P. Three-dimensional forest light interaction model using a monte carlo method. IEEE Trans Geosci Remote Sens. 1996;34(4):946–956.
North P, Rosette J, Suárez J, Los S. A Monte Carlo radiative transfer model of satellite waveform LiDAR. Int J Remote Sens. 2010;31(5):1343–1358.
Ollinger S. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2011;189(2):375–394. PubMed
Omari K, White H, Staenz K, King D. Retrieval of forest canopy parameters by inversion of the proflair leaf-canopy reflectance model using the lut approach. IEEE J Sel Top Appl Earth Observ Remote Sens. 2013;6(2):715–723.
Oppelt N, Mauser W. Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using avis data. Int J Remote Sens. 2004;25(1):145–159.
Paruelo J, Tomasel F. Prediction of functional characteristics of ecosystems: a comparison of artificial neural networks and regression models. Ecol Model. 1997;98(2-3):173–186.
Pasqualotto N, Delegido J, Wittenberghe SV, Verrelst J, Rivera JP, Moreno J. Retrieval of canopy water content of different crop types with two new hyperspectral indices: water absorption area index and depth water index. Int J Appl Earth Observ Geoinf. 2018;67:69–78. PubMed PMC
Peng Y, Huang H, Wang W, Wu J, Wang X. Rapid detection of chlorophyll content in corn leaves by using least squares-support vector machines and hyperspectral images. Jiangsu Daxue Xuebao (Ziran Kexue Ban)/J Jiangsu Univ (Nat Sci Edn) 2011;32(2):125–128. +174.
Penuelas J, Gamon JA, Fredeen AL, Merino J, Field CB. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves. Remote Sens Environ. 1994;48(2):135–146.
Pham T, Yoshino K, Bui D. Biomass estimation of Sonneratia caseolaris (l.) Engler at a coastal area of Hai Phong city (Vietnam) using ALOS-2 PALSAR imagery and GIS-based multi-layer perceptron neural networks. GISci Remote Sens. 2017;54(3):329–353.
Pinty B, Gobron N, Widlowski JL, Gerstl S, Verstraete M, Antunes M, Bacour C, Gascon F, Gastellu JP, Goel N, Jacquemoud S, et al. Radiation transfer model intercomparison (RAMI) exercise. J Geophys Res D Atmos. 2001;106(D11):11937–11956.
Pinty B, Widlowski JL, Taberner M, Gobron N, Verstraete M, Disney M, Gascon F, Gastellu JP, Jiang L, Kuusk A, Lewis P, et al. Radiation Transfer Model Intercomparison (RAMI) exercise: results from the second phase. J Geophys Res D Atmos. 2004;109(6):D06210
Pôças I, Gonçalves J, Costa P, Gonçalves I, Pereira L, Cunha M. Hyperspectral-based predictive modelling of grapevine water status in the Portuguese Douro wine region. Int J Appl Earth Observ Geoinf. 2017;58:177–190.
Preidl S, Doktor D. Comparison of radiative transfer model inversions to estimate vegetation physiological status based on hyperspectral data; 3rd workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS); 2011.
Pu R, Gong P, Biging GS, Larrieu MR. Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index. IEEE Trans Geosci Remote Sens. 2003;41(4):916–921.
Pullanagari R, Kereszturi G, Yule I. Mapping of macro and micro nutrients of mixed pastures using airborne AisaFENIX hyperspectral imagery. ISPRS J Photogramm Remote Sens. 2016;117:1–10.
Ramoelo A, Skidmore AK, Schlerf M, Mathieu R, Heitkönig IM. Water-removed spectra increase the retrieval accuracy when estimating savanna grass nitrogen and phosphorus concentrations. ISPRS J Photogramm Remote Sens. 2011;66(4):408–417.
Rasmussen CE, Williams CKI. Gaussian processes for machine learning. The MIT Press; New York: 2006.
Rivard B, Feng J, Gallie A, Sanchez-Azofeifa A. Continuous wavelets for the improved use of spectral libraries and hyperspectral data. Remote Sens Environ. 2008;112(6):2850–2862.
Rivera Caicedo J, Verrelst J, Muñoz-Marí J, Moreno J, Camps-Valls G. Toward a semiautomatic machine learning retrieval of biophysical parameters. IEEE J Sel Top Appl Earth Observ Remote Sens. 2014;7(4):1249–1259.
Rivera J, Verrelst J, Leonenko G, Moreno J. Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL model. Remote Sens. 2013;5(7):3280–3304.
Rivera J, Verrelst J, Delegido J, Veroustraete F, Moreno J. On the semi-automatic retrieval of biophysical parameters based on spectral index optimization. Remote Sens. 2014;6(6):4924–4951.
Rivera JP, Verrelst J, Gómez-Dans J, Muñoz Marí J, Moreno J, Camps-Valls G. An emulator toolbox to approximate radiative transfer models with statistical learning. Remote Sens. 2015;7(7):9347
Rivera-Caicedo JP, Verrelst J, Muñoz-Marí J, Camps-Valls G, Moreno J. Hyperspectral dimensionality reduction for biophysical variable statistical retrieval. ISPRS J Photogramm Remote Sens. 2017;132:88–101.
Roelofsen HD, Kooistra L, van Bodegom PM, Verrelst J, Krol J, Witte JPM. Mapping a priori defined plant associations using remotely sensed vegetation characteristics. Remote Sens Environ. 2014;140:639–651.
Roth K, Roberts D, Dennison P, Alonzo M, Peterson S, Beland M. Differentiating plant species within and across diverse ecosystems with imaging spectroscopy. Remote Sens Environ. 2015;167:135–151.
Saich P, Lewis P, Disney M, Thackrah G. Comparison of Hymap/E-SAR data with models for optial reflectance and microwave scattering from vegetation canopies. Retriev Bio Geo Phys Parameters SAR Data Land Appl. 2002;475:75–80.
Sanches I, Souza Filho C, Kokaly R. Spectroscopic remote sensing of plant stress at leaf and canopy levels using the chlorophyll 680 nm absorption feature with continuum removal. ISPRS J Photogramm Remote Sens. 2014;97:111–122.
Scafutto R, de Souza Filho C, Rivard B. Characterization of mineral substrates impregnated with crude oils using proximal infrared hyperspectral imaging. Remote Sens Environ. 2016;179:116–130.
Schlerf M, Atzberger C. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sens Environ. 2006;100(3):281–294.
Schlerf M, Atzberger C, Hill J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens Environ. 2005;95(2):177–194.
Schlerf M, Atzberger C, Hill J, Buddenbaum H, Werner W, Schüler G. Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy. Int J Appl Earth Observ Geoinf. 2010;12(1):17–26.
Shiklomanov A, Dietze M, Viskari T, Townsend P, Serbin S. Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to RTM inversion. Remote Sens Environ. 2016;183:226–238.
Sims DA, Gamon JA. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ. 2002;81(2-3):337–354.
Stimson HC, Breshears DD, Ustin SL, Kefauver SC. Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma. Remote Sens Environ. 2005;96(1):108–118.
Suykens J, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett. 1999;9(3):293–300.
Thenkabail P, Smith R, De Pauw E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ. 2000;71(2):158–182.
Tian Y, Yao X, Yang J, Cao W, Zhu Y. Extracting red edge position parameters from ground-and space-based hyperspectral data for estimation of canopy leaf nitrogen concentration in rice. Plant Product Sci. 2011;14(3):270–281.
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodological) 1996;58:267–288.
Tuia D, Verrelst J, Alonso L, Pérez-Cruz F, Camps-Valls G. Multioutput support vector regression for remote sensing biophysical parameter estimation. IEEE Geosci Remote Sens Lett. 2011;8(4):804–808.
Tuia D, Volpi M, Verrelst J, Camps-Valls G. In: Mathematical models for remote sensing image processing Signals and communication technology. Moser G, Zerubia J, editors. Springer; Cham: 2018. Advances in kernel machines for image classification and biophysical parameter retrieval; pp. 399–441.
Uno Y, Prasher S, Lacroix R, Goel P, Karimi Y, Viau A, Patel R. Artificial neural networks to predict corn yield from compact airborne spectrographic imager data. Comput Electron Agric. 2005;47(2):149–161.
Vaglio Laurin G, Cheung-Wai Chan J, Chen Q, Lindsell J, Coomes D, Guerriero L, Del Frate F, Migli-etta F, Valentini R. Biodiversity mapping in a tropical West African forest with airborne hyperspectral data. PLoS ONE. 2014;9(6):e97910. PubMed PMC
Van Der Tol C, Verhoef W, Timmermans J, Verhoef A, Su Z. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences. 2009;6(12):3109–3129.
Van Der Tol C, Berry J, Campbell P, Rascher U. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. J Geophys Res Biogeosci. 2014;119:2312–2327. PubMed PMC
van der Tol C, Rossini M, Cogliati S, Verhoef W, Colombo R, Rascher U, Mohammed G. A model and measurement comparison of diurnal cycles of sun-induced chlorophyll fluorescence of crops. Remote Sens Environ. 2016;186:663–677.
Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing. Adv Neural Inf Process Syst. 1997;9:281–287.
Verhoef W. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens Environ. 1984a;16(2):125–141.
Verhoef W. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens Environ. 1984b;16(2):125–141.
Verhoef W. Earth observation modeling based on layer scattering matrices. Remote Sens Environ. 1985;17(2):165–178.
Verrelst J, Schaepman M, Koetz B, Kneubuhler M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens Environ. 2008;112(5):2341–2353.
Verrelst J, Schaepman ME, Malenovský Z, Clevers JGPW. Effects of woody elements on simulated canopy reflectance: implications for forest chlorophyll content retrieval. Remote Sens Environ. 2010;114(3):647–656.
Verrelst J, Alonso L, Camps-Valls G, Delegido J, Moreno J. Retrieval of vegetation biophysical parameters using Gaussian process techniques. IEEE Trans Geosci Remote Sens. 2012a;50(5 PART 2):1832–1843.
Verrelst J, Alonso L, Camps-Valls G, Delegido J, Moreno J. Retrieval of vegetation biophysical parameters using Gaussian process techniques. IEEE Trans Geosci Remote Sens. 2012b;50(5 PART 2):1832–1843.
Verrelst J, Romijn E, Kooistra L. Mapping vegetation density in a heterogeneous river floodplain ecosystem using pointable CHRIS/PROBA data. Remote Sens. 2012c;4(9):2866–2889.
Verrelst J, Alonso L, Rivera Caicedo J, Moreno J, Camps-Valls G. Gaussian process retrieval of chlorophyll content from imaging spectroscopy data. IEEE J Sel Top Appl Earth Observ Remote Sens. 2013a;6(2):867–874.
Verrelst J, Rivera J, Moreno J, Camps-Valls G. Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval. ISPRS J Photogramm Remote Sens. 2013b;86:157–167.
Verrelst J, Rivera J, Leonenko G, Alonso L, Moreno J. Optimizing LUT-based RTM inversion for semiautomatic mapping of crop biophysical parameters from sentinel-2 and-3 data: role of cost functions. IEEE Trans Geosci Remote Sens. 2014;52(1):257–269.
Verrelst J, Camps-Valls G, Muñoz Marí J, Rivera J, Veroustraete F, Clevers J, Moreno J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—a review. ISPRS J Photogramm Remote Sens. 2015;108:273–290.
Verrelst J, Dethier S, Rivera JP, Munoz-Mari J, Camps-Valls G, Moreno J. Active learning methods for efficient hybrid biophysical variable retrieval. IEEE Geosci Remote Sens Lett. 2016a;13(7):1012–1016.
Verrelst J, Rivera JP, Gitelson A, Delegido J, Moreno J, Camps-Valls G. Spectral band selection for vegetation properties retrieval using Gaussian processes regression. Int J Appl Earth Observ Geoinf. 2016b;52:554–567.
Verrelst J, Sabater N, Rivera JP, Muñoz Marí J, Vicent J, Camps-Valls G, Moreno J. Emulation of leaf, canopy and atmosphere radiative transfer models for fast global sensitivity analysis. Remote Sens. 2016c;8(8):673
Verrelst J, Rivera Caicedo J, Muñoz Marí J, Camps-Valls G, Moreno J. SCOPE-based emulators for fast generation of synthetic canopy reflectance and sun-induced fluorescence Spectra. Remote Sens. 2017;9(9):927
Vilfan N, van der Tol C, Muller O, Rascher U, Verhoef W. Fluspect-B: a model for leaf fluorescence, reflectance and transmittance spectra. Remote Sens Environ. 2016;186:596–615.
Vohland M, Mader S, Dorigo W. Applying different inversion techniques to retrieve stand variables of summer barley with PROSPECT + SAIL. Int J Appl Earth Observ Geoinf. 2010;12(2):71–80.
Wang F, Huang J, Lou Z. A comparison of three methods for estimating leaf area index of paddy rice from optimal hyperspectral bands. Precis Agric. 2011;12(3):439–447.
Wang F, Huang J, Wang Y, Liu Z, Peng D, Cao F. Monitoring nitrogen concentration of oilseed rape from hyperspectral data using radial basis function. Int J Digital Earth. 2013;6(6):550–562.
Wang J, Wang T, Skidmore A, Shi T, Wu G. Evaluating different methods for grass nutrient estimation from canopy hyperspectral reflectance. Remote Sens. 2015;7(5):5901–5917.
Wang B, Chen J, Ju W, Qiu F, Zhang Q, Fang M, Chen F. Limited effects of water absorption on reducing the accuracy of leaf nitrogen estimation. Remote Sens. 2017a;9(3):291
Wang J, Shen C, Liu N, Jin X, Fan X, Dong C, Xu Y. Non-destructive evaluation of the leaf nitrogen concentration by in-field visible/near-infrared spectroscopy in pear orchards. Sensors (Switzerland) 2017b;17(3):538 PubMed PMC
Widlowski JL, Pinty B, Clerici M, Dai Y, De Kauwe M, De Ridder K, Kallel A, Kobayashi H, Lavergne T, Ni-Meister W, Olchev A, et al. RAMI4PILPS: an intercomparison of formulations for the partitioning of solar radiation in land surface models. J Geophys Res G Biogeosci. 2011 doi: 10.1029/2010JG001511. DOI
Widlowski JL, Taberner M, Pinty B, Bruniquel-Pinel V, Disney M, Fernandes R, Gastellu-Etchegorry JP, Gobron N, Kuusk A, Lavergne T, Leblanc S, et al. Third radiation transfer model intercomparison (RAMI) exercise: documenting progress in canopy reflectance models. J Geophys Res D Atmos. 2007;112(9):D09111
Widlowski JL, Mio C, Disney M, Adams J, Andredakis I, Atzberger C, Brennan J, Busetto L, Chelle M, Ceccherini G, et al. The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: actual canopy scenarios and conformity testing. Remote Sens Environ. 2015;169:418–437.
Wold S, Esbensen K, Geladi P. Principal component analysis. Chemom Intell Lab Syst. 1987;2(1–3):37–52.
Xue J, Su B. Significant remote sensing vegetation indices: a review of developments and applications. J Sens. 2017 doi: 10.1155/2017/1353691. DOI
Yang X, Huang J, Wu Y, Wang J, Wang P, Wang X, Huete A. Estimating biophysical parameters of rice with remote sensing data using support vector machines. Sci China Life Sci. 2011;54(3):272–281. PubMed
Yang P, Verhoef W, van der Tol C. The mSCOPE model: a simple adaptation to the SCOPE model to describe reflectance, fluorescence and photosynthesis of vertically heterogeneous canopies. Remote Sens Environ. 2017;201:1–11.
Yao X, Huang Y, Shang G, Zhou C, Cheng T, Tian Y, Cao W, Zhu Y. Evaluation of six algorithms to monitor wheat leaf nitrogen concentration. Remote Sens. 2015;7(11):14939–14966.
Ye X, Sakai K, Manago M, Asada SI, Sasao A. Prediction of citrus yield from airborne hyper-spectral imagery. Precis Agric. 2007;8(3):111–125.
Yi Q, Jiapaer G, Chen J, Bao A, Wang F. Different units of measurement of carotenoids estimation in cotton using hyperspectral indices and partial least square regression. ISPRS J Photogramm Remote Sens. 2014;91:72–84.
Yin T, Lauret N, Gastellu-Etchegorry JP. Simulation of satellite, airborne and terrestrial LiDAR with DART (II): ALS and TLS multi-pulse acquisitions, photon counting, and solar noise. Remote Sens Environ. 2016;184:454–468.
Yue J, Yang G, Li C, Li Z, Wang Y, Feng H, Xu B. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens. 2017;9(7):708
Zandler H, Brenning A, Samimi C. Quantifying dwarf shrub biomass in an arid environment: comparing empirical methods in a high dimensional setting. Remote Sens Environ. 2015;158:140–155.
Zarco-Tejada P, Miller J, Noland T, Mohammed G, Sampson P. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Trans Geosci Remote Sens. 2001;39(7):1491–1507.
Zarco-Tejada P, Miller J, Mohammed G, Noland T, Sampson P. Vegetation stress detection through chlorophyll+ estimation and fluorescence effects on hyperspectral imagery. J Environ Qual. 2002;31(5):1433–1441. PubMed
Zhang S, Wang Q. Inverse retrieval of chlorophyll from reflected spectra for assimilating branches of drought-tolerant Tamarix ramosissima. IEEE J Sel Top Appl Earth Observ Remote Sens. 2015;8(4):1498–1505.
Zhang Y, Chen J, Miller J, Noland T. Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery. Remote Sens Environ. 2008;112(7):3234–3247.
Mind the leaf anatomy while taking ground truth with portable chlorophyll meters
Making the Genotypic Variation Visible: Hyperspectral Phenotyping in Scots Pine Seedlings