Variability and Uncertainty Challenges in Scaling Imaging Spectroscopy Retrievals and Validations from Leaves Up to Vegetation Canopies

. 2019 ; 40 () : 631-656. [epub] 20190509

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36081835

Grantová podpora
755617 European Research Council - International

Imaging spectroscopy of vegetation requires methods for scaling and generalizing optical signals that are reflected, transmitted and emitted in the solar wavelength domain from single leaves and observed at the level of canopies by proximal sensing, airborne and satellite spectroradiometers. The upscaling embedded in imaging spectroscopy retrievals and validations of plant biochemical and structural traits is challenged by natural variability and measurement uncertainties. Sources of the leaf-to-canopy upscaling variability and uncertainties are reviewed with respect to: (1) implementation of retrieval algorithms and (2) their parameterization and validation of quantitative products through in situ field measurements. The challenges are outlined and discussed for empirical and physical leaf and canopy radiative transfer modelling components, considering both forward and inverse modes. Discussion on optical remote sensing validation schemes includes also description of a multiscale validation concept and its advantages. Impacts of intraspecific and interspecific variability on collected field and laboratory measurements of leaf biochemical traits and optical properties are demonstrated for selected plant species, and field measurement uncertainty sources are listed and discussed specifically for foliar pigments and canopy leaf area index. The review concludes with the main findings and suggestions as how to reduce uncertainties and include variability in scaling vegetation imaging spectroscopy signals and functional traits of single leaves up to observations of whole canopies.

Zobrazit více v PubMed

Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct Ecol. 2010;24:1192–1201.

Albrechtová J, Janáček J, Lhotáková Z, Radochová B, Kubínová L. Novel efficient methods for measuring mesophyll anatomical characteristics from fresh thick sections using stereology and confocal microscopy: application on acid rain-treated Norway spruce needles. J Exp Bot. 2007;58:1451–1461. PubMed

Allen R, Wette F. Calculation of dynamical surface properties of noble-gas crystals. I. The quasiharmonic approximation. Phys Rev. 1969;179:873.

Amato U, Antoniadis A, Carfora MF, Colandrea P, Cuomo V, Franzese M, Pignatti S, Serio C. Statistical classification for assessing PRISMA hyperspectral potential for agricultural land use. IEEE J Sel Top Appl Earth Observ Remote Sens. 2013;6:615–625.

Atherton J, Olascoaga B, Alonso L, Porcar-Castell A. Spatial Variation of leaf optical properties in a boreal forest is influenced by species and light environment. Front Plant Sci. 2017;8:309. PubMed PMC

Atzberger C, Richter K. Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery. Remote Sens Environ. 2012;120:208–218.

Auger S, Shipley B. Inter-specific and intra-specific trait variation along short enviromental gradients in an old-growth temperate forest. J Veg Sci. 2013;24:419–428.

Bachmann M, Adar S, Ben-Dor E, Biesemans J, Briottet X, Grant M, Hanus J, Holzwarth S, Hueni A, Kneubuehler M, et al. Towards agreed data quality layers for airborne hyperspectral imagery; Proceedings of the 7th EARSeL-SIG-IS 2011; Edinburgh, UK. 11-13 April 2011.

Bachmann M, Makarau A, Segl K, Richter R. Estimating the influence of spectral and radiometric calibration uncertainties on EnMAP data products—examples for ground reflectance retrieval and vegetation indices. Remote Sens-Basel. 2015;7:10689–10714.

Bacour C, Baret F, Béal D, Weiss M, Pavageau K. Neural network estimation of LAI, fAPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data: principles and validation. Remote Sens Environ. 2006;105:313–325.

Baldocchi DD, Falge E, Gu L, Olson R, Hollinger DY, Running SW, Anthoni P, Bernhofer C, Davis KJ, Evans R, Fuentes J, et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc. 2001;82:2415–2434.

Bao Y, Ni W, Wang D, Yue C, He H, Verbeeck H. Effects of tree trunks on estimation of clumping index and LAI from HemiView and terrestrial LiDAR. Forests. 2018;9:144.

Baraloto C, Paine TCE, Patiño S, Bonal D, Hérault B, Chave J. Functional trait variation and sampling strategies in species-rich plant communities. Funct Ecol. 2010;24:208–216.

Baret F, Weiss M, Allard D, Garrigues S, Leroy M, Jeanjean H, et al. VALERI: a network of sites and a methodology for the validation of medium spatial resolution land satellite products. Remote Sens Environ. 2005;76:36–39.

Baret F, Morissette J, Fernandes R, Champeaux JL, Myneni R, Chen J, Plummer S, Weiss M, Bacour C, Garrigue S, et al. Evaluation of the representativeness of networks of sites for the global validation and inter-comparison of land biophysical products. Proposition of the CEOS-BELMANIP. IEEE T Geosci Remote. 2006;44:1794–1803.

Baret F, Hagolle O, Geiger B, Bicheron P, Miras B, Huc M, Berthelot B, Nino F, Weiss M, Samain O, et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: part 1: principles of the algorithm. Remote Sens Environ. 2007;110:275–286.

Barry K, Newnham G, Stone C. Estimation of chlorophyll content in Eucalyptus globulus foliage with the leaf reflectance model PROSPECT. Agric For Meteorol. 2009;149:1209–1213.

Bréda NJJ. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot. 2003;54:2403–2417. PubMed

Breece H, Holmes R. Bidirectional scattering characteristics of healthy green soybean and corn leaves in vivo. Appl Opt. 1971;10:119–127. PubMed

Buddenbaum H, Stern O, Stellmes M, Stoffels J, Pueschel P, Hill J, Werner W. Field imaging spectroscopy of beech seedlings under dryness stress. Remote Sens-Basel. 2012;4:3721–3740.

Buddenbaum H, Rock G, Hill J, Werner W. Measuring stress reactions of beech seedlings with PRI, fluorescence, temperatures and emissivity from VNIR and thermal field imaging spectroscopy. Eur J Remote Sens. 2015a;48:263–282.

Buddenbaum H, Stern O, Paschmionka B, Hass E, Gattung T, Stoffels J, Hill J, Werner W, et al. Using VNIR and SWIR field imaging spectroscopy for drought stress monitoring of beech seedlings. Int J Remote Sens. 2015b;36:4590–4605.

Calders K, Newnham G, Burt A, Murphy S, Raumonen P, Herold M, Culvenor D, Avitabile V, Disney M, Armston J, Kaasalainen M. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol Evol. 2015;6:198–208.

Camps-Valls G, Verrelst J, Muoz-Mar J, Laparra V, Mateo-Jimenez F, Gomez-Dans J. A survey on Gaussian processes for earth observation data analysis. IEEE Geosci Remote Sens Mag. 2016;4:58–78.

Cerovic ZG, Masdoumier G, Ghozlen NB, Latouche G. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol Plant. 2012;146:251–260. PubMed PMC

Chen JM, Rich PM, Gower ST, Norman JM, Plummer SE. Leaf area index of boreal forests: theory, techniques and measurements. J Geophys Res. 1997;102:29429–429443.

Claverie M, Vermote EF, Franch B, Masek JG. Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sens Environ. 2015;109:390–403. PubMed PMC

Cohen W, Justice C. Validating MODIS terrestrial ecology products: linking in situ and satellite measurements. Remote Sens Environ. 1999;70:1–4.

Collis DG, Harris JWE. Line-throwing gun and cutter for obtaining branches from tree crowns. Can J For Res. 1973;3:149–154.

Combal B, Baret F, Weiss M, Trubuil A, Macé D, Pragnère A, Myneni R, Knyazikhin Y, Wang L. Retrieval of canopy biophysical variables from bidirectional reflectance. Using prior information to solve the ill-posed inverse problem. Remote Sens Environ. 2002;84:1–15.

Cooper GF, Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach Learn. 1992;9:309–347.

Corbari C, Sobrino JA, Mancini M, Hidalgo V. Mass and energy flux estimates at different spatial resolutions in a heterogeneous area through a distributed energy-water balance model and remotesensing data. Int J Remote Sens. 2013;34:3208–3230.

Croft H, Chen J, Wang R, Mo G, Luo S, Luo X, He L, Gonsamo A, Arabian J, Zhang Y, Simic-Milas A, et al. The global distribution of leaf chlorophyll content. Remote Sens Environ. (in review)

Dawson TP, Curran PJ, Plummer SE. LIBERTY—modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sens Environ. 1998;65:50–60.

de Bello F, Lavorel S, Albert CH, Thuiller W, Grigulis K, Dolezal J, Janeček S, Lepš J. Quantifying the relevance of intraspecific trait variability for functional diversity. Methods Ecol Evol. 2011;2(2):163–174.

Delegido J, Alonso L, González G, Moreno J. Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC) Int J Appl Earth Obs. 2010;12:165–174.

Dungan JL. In: Modelling scale in geographic information science. Tate NJ, Atkinson PM, editors. Wiley; Chichester: 2001. Scaling up and scaling down: the relevance of the support effect on remote sensing of vegetation; p. 277.

Eckrich CA, Flaherty EA, Ben-David M. Estimating leaf area index in Southeast Alaska: a comparison of two techniques. PLoS ONE. 2013;8:e77642. PubMed PMC

Feng M, Huang Ch, Channan S, Vermote EF, Masek JG, Townshend JR. Quality assessment of Land-sat surface reflectance products using MODIS data. Comput Geosci. 2012;38:9–22.

Féret J-B, Asner GP. Spectroscopic classification of tropical forest species using radiative transfer modeling. Remote Sens Environ. 2011;115:2415–2422.

Féret J-B, Francois C, Asner GP, Gitelson AA, Martin RE, Bidel LPR, Ustin SL, le Maire G, Jacquemoud S. PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens Environ. 2008;112:3030–3043.

Féret J-B, Gitelson AA, Noble SD, Jacquemoud S. PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle. Remote Sens Environ. 2017;193:204–215.

Fernandes R, Plummer S, Nightingale J, Baret F, Camacho F, Fang H, Garrigues S, Gobron N, Lang M, Lacaze R, Leblanc S, et al. In: Best practice for satellite-derived land product validation. Schaepman-Strub G, Román M, Nickeson J, editors. Land Product Validation Subgroup (WGCV/CEOS); 2014. Global leaf area index product validation good practices. Version 2.0; p. 76.

Gamon JA, Rahman AF, Dungan JL, Schildhauer M, Huemmrich KF. Spectral Network (SpecNet): what is it and why do we need it? Remote Sens Environ. 2006;103:227–235.

Gamon JA, Somers B, Malenovský Z, Middleton EM, Rascher U, Schaepman ME. Assessing vegetation function with imaging spectroscopy. Surv Geophys. 2019 doi: 10.1007/s10712-019-09511-5. DOI

Garrigues S, Lacaze R, Baret F, Morisette J, Weiss M, Nickeson J, Fernandes R, Plummer S, Shabanov NV, Myneni R, et al. Validation and intercomparison of global leaf area index products derived from remote sensing data. J Geophys Res. 2008a;113:G02028

Garrigues S, Shabanov NV, Swanson K, Morisette JT, Baret F, Myneni RB. Intercomparison and sensitivity analysis of leaf area index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agric For Meteorol. 2008b;148:1193–1209.

Gascon F, Bouzinac C, Thépaut O, Jung M, Francesconi B, Louis J, Lonjou V, Lafrance B, et al. Copernicus Sentinel-2A calibration and products validation status. Remote Sens-Basel. 2017;9:584.

Gastellu-Etchegorry JP, Demarez V, Pinel V, Zagolski F. Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sens Environ. 1996;58:131–156.

Gastellu-Etchegorry JP, Lauret N, Yin T, Landier L, Kallel A, Malenovský Z, et al. DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence. IEEE J Sel Top Appl. 2017;10:2640–2649.

GCOS. Systematic observation requirements for satellite-based products for climate, 2011 Update, Supplemental Details to the Satellite-Based Component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC. GCOS-154. 2011:138.

Gorroño J, Fomferra N, Peters M, Gascon F, Underwood CI, Fox NP, Kirches G, Brockmann C. A radiometric uncertainty tool for the Sentinel 2 mission. Remote Sens-Basel. 2017;9:178.

Govaerts Y, Verstraete MM. Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media. IEEE Trans Geosci Remote. 1998;36:493–505.

Guanter L, Kaufmann H, Segl K, Foerster S, Rogass C, Chabrillat S, Kuester T, Hollstein A, Rossner G, Chlebek C, Straif C, et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens-Basel. 2015;7:8830–8857.

Homolová L, Malenovský Z, Clevers JGPW, García-Santos G, Schaepman ME. Review of opticalbased remote sensing for plant trait mapping. Ecol Complex. 2013;15:1–16.

Hovi A, Raitio P, Rautiainen M. A spectral analysis of 25 boreal tree species. Silva Fenn. 2017;51:7753

Hueni A, Nieke J, Schopfer J, Kneubühler M, Itten K. The spectral database SPECCHIO for improved long term usability and data sharing. Comput Geosci. 2009;37:861–873.

Hueni A, Lenhard K, Baumgartner A, Schaepman ME. The APEX (airborne prism experiment-imaging spectrometer) calibration information system. IEEE Trans Geosci Remote Sens. 2013;51(11):5169–5180.

Hueni A, Damm A, Kneubuehler M, Schläpfer D, Schaepman ME. Field and airborne spectroscopy cross validation—some considerations. IEEE J Sel Top Appl. 2017;10:1117–1135.

Humplík JF, Lazár D, Husičková A, Spíchal L. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses—review. Plant Methods. 2015;11:29. PubMed PMC

Jacquemoud S, Baret F. PROSPECT: a model of leaf optical properties spectra. Remote Sens Environ. 1990;34:75–91.

Janoutová R, Homolová L, Malenovský Z, Hanuš J, Lauret N, Gastellu-Etchegorry JP. Influence of 3D spruce tree representation on accuracy of airborne and satellite forest reflectance simulated in DART. Forests. 2019;10:292.

Jay S, Bendoula R, Hadoux X, Féret B, Gorretta N. A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy. Remote Sens Environ. 2016;177:220–236.

Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F. Review of methods for in situ leaf area index determination Part I Theories, sensors and hemispherical photography. Agric For Meteorol. 2004;121:19–35.

Justice C, Belward A, Morisette J, Lewis P, Privette J, Baret F. Developments in the ‘validation’ of satellite sensor products for the study of the land surface. Int J Remote Sens. 2000;21(17):3383–3390.

Juszak I, Iturrate-Garcia M, Gastellu-Etchegorry JP, Schaepman ME, Maximov TC, Schaepman-Strub G. Drivers of shortwave radiation fluxes in Arctic tundra across scales. Remote Sens Environ. 2017;193:86–102.

Kanning M, Kühling I, Trautz D, Jarmer T. High-resolution UAV-based hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield prediction. Remote Sens. 2018;10:2000

Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, et al. TRY—a global database of plant traits. Glob Change Biol. 2011;17:2905–2935. PubMed

Kimes D, Knyazhikhin Y, Privette J, Abuelgasim A, Gao F. Inversion methods for physically-based models. Remote Sens Rev. 2000;18:381–439.

Knipling E. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens Environ. 1970;1:155–159.

Knyazikhin Y, Schull MA, Stenberg P, Mõttus M, Rautiainen M, Yang Y, Marshak A, Carmona PL, Kaufmann RK, Lewis P, Disney MI, et al. Hyperspectral remote sensing of foliar nitrogen content. Proc Natl Acad Sci USA. 2013;110:E185–E192. PubMed PMC

Kokaly RF, Asner GP, Ollinger SV, Martin ME, Wessman CA. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens Environ. 2009;113:S78–S91.

Kükenbrink D, Hueni A, Schneider FD, Damm A, Gastellu-Etchegorry JP, Schaepman ME, Morsdorf F. Mapping the irradiance field of a single tree: quantifying vegetation induced adjacency effects. IEEE Trans Geosci Remote. 2019 doi: 10.1109/tgrs.2019.2895211. DOI

Kuusk A, Kuusk J, Lang J. Modeling directional forest reflectance with the hybrid type forest reflectance model FRT. Remote Sens Environ. 2014;49:196–204.

Laurent VCE, Verhoef W, Damm A, Schaepman ME, Clevers JGPW. A Bayesian object-based approach for estimating vegetation biophysical and biochemical variables from APEX at-sensor radiance data. Remote Sens Environ. 2013;139:6–17.

Laurent VCE, Schaepman ME, Verhoef W, Weyermann J, Chavez RO. Bayesian object-based estimation of LAI and chlorophyll from a simulated Sentinel-2 top-of-atmosphere radiance image. Remote Sens Environ. 2014;140:318–329.

Lewis P. Three-dimensional plant modelling for remote sensing simulation studies using the botanical plant modelling system. Agron Agric Environ. 1999;19:185–210.

Liang S. Quantitative remote sensing of land surfaces. Wiley; Hoboken: 2004. ISBN 0-471-28166-2.

Lichtenthaler HK, Ač A, Marek MV, Kalina J, Urban O. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol Biochem. 2007;45:577–588. PubMed

Liu Z, Chen JM, Jin G, Qi Y. Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests. Agric For Meteorol. 2015;209-210:36–48.

Lucieer A, Malenovský Z, Veness T, Wallace L. HyperUAS—imaging spectroscopy from a multirotor unmanned aircraft system. J Field Robot. 2014;31:571–590.

Lukeš P, Stenberg P, Rautiainen M, Mottus M, Vanhatalo K. Optical properties of leaves and needles for boreal tree species in Europe. Remote Sens Lett. 2013;4:667–676.

Lukeš P, Homolová L, Navrátil M, Hanuš J. Assessing the consistency of optical properties measured in four integrating spheres. Int J Remote Sens. 2017;38:3817–3830.

Lyapustin A, Wang Y, Xiong X, Meister G, Platnick S, Levy R, Franz B, Korkin S, Hilker T, Tucker J, Hall F, et al. Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmos Meas Tech. 2014;7:4353–4365.

Macfarlane C, Arndt SK, Livesley SJ, Edgar AC, White DA, Adams MA, Eamus D. Estimation of leaf area index in eucalypt forest with vertical foliage, using cover and fullframe fisheye photography. For Ecol Manag. 2007;242:756–763.

Malenovský Z, Albrechtová J, Lhotáková Z, Zurita-Milla R, Clevers JGPW, Schaepman ME, Cudlín P. Applicability of the PROSPECT model for Norway spruce needles. Int J Remote Sens. 2006;27:5315–5340.

Malenovský Z, Bartholomeus HM, Acerbi-Junior FW, Schopfer JT, Painter TH, Epema GF, Bregt AK. Scaling dimensions in spectroscopy of soil and vegetation. Int J Appl Earth Obs. 2007;9:137–164.

Malenovský Z, Homolová L, Zurita-Milla R, Lukeš P, Kaplan V, Hanuš J, Gastellu-Etchegorry JP, Schaepman ME. Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sens Environ. 2013;131:85–102.

Malenovský Z, Turnbull J, Lucieer A, Robinson SA. Antarctic moss stress assessment based on chlorophyll, water content, and leaf density retrieved from imaging spectroscopy data. New Phytol. 2015;208:608–624. PubMed

Malenovský Z, Lucieer A, King D, Turnbull J, Robinson SA. Unmanned aircraft system advances health mapping of fragile polar vegetation. Methods Ecol Evol. 2017;8:1842–1857.

Marceau DJ, Hay GJ. Remote sensing contributions to the scale issue. Can J Remote Sens. 1999;25:357–366.

McGloin R, Šigut L, Havránková K, Dušek J, Pavelka M, Sedlák P. Energy balance closure at a variety of ecosystems in Central Europe with contrasting topographies. Agric For Meteorol. 2018;248:418–431.

Moreno-Martínez Á, Camps-Valls G, Kattge J, Robinson N, Reichstein M, et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens Environ. 2018;218:69–88.

Morisette JT, Baret F, Privette JL, Myneni RB, Nickeson JE, Garrigues S, Shabanov NV, Weiss M, Fernandes RA, Leblanc SG, et al. Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup. IEEE Trans Geosci Remote. 2006;44:1804–1817.

Mussche S, Samson R, Nachtergale L, De Schrijver A, Lemeur R, Lust N. A comparison of optical and direct methods for monitoring the seasonal dynamics of leaf area index in deciduous forests. Silva Fenn. 2001;35:373–384.

Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith GR, et al. Global products of vegetation leaf area and absorbed PAR from year one of MODIS data. Remote Sens Environ. 2002;83:214–231.

Niinemets Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol Res. 2010;25:693–714.

Noda HM, Motohka T, Murakamii K, Muraoka H, Nasahara KN. Accurate measurement of optical properties of narrow leaves and conifer needles with a typical integrating sphere and spectroradiometer. Plant Cell Environ. 2013;36:1903–1909. PubMed

North PRJ. Three-dimensional forest light interaction model using a Monte Carlo method. IEEE Trans Geosci Remote. 1996;34:946–956.

Parry C, Blonquist JM, Bugbee B. In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship. Plant Cell Environ. 2014;37:2508–2520. PubMed

Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, et al. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot. 2013;61:167–234.

QA4EO Task Team. A quality assurance framework for Earth Observation: Principles. 2009. [Accessed 20 Sept 2017]. http://qa4eo.org/docs/QA4EO_Principles_v4.0.pdf .

Rahman H, Verstraete M, Pinty B. Coupled surface-atmosphere reflectance (CSAR) model 1. Model description and inversion on synthetic data. J Geophys Res. 1993;98:779–789.

Rautiainen M, Stenberg P. Application of photon recollision probability in coniferous canopy reflectance simulations. Remote Sens Environ. 2005;96:98–107.

Rivera JP, Verrelst J, Leoneko G, Moreno J. Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL model. Remote Sens. 2013;5:3280–3304.

Schaaf C, Gao F, Strahler A, Lucht W, Li X, Tsang T, Strugnell N, Zhang X, Jin Y, et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Environ. 2002;83:135–148.

Schaepman ME, Ustin SL, Plaza AJ, Painter TH, Verrelst J, Liang S. Earth system science related imaging spectroscopy—an assessment. Remote Sens Environ. 2009;113:S123–S137.

Schaepman ME, Jehle M, Hueni A, D’Odorico P, Damm A, Weyerman J, Schneider F, Laurent V, Popp C, Seidel F, et al. Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX) Remote Sens Environ. 2015;158:207–219.

Schlerf M, Atzberger C. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sens Environ. 2006;100:281–294.

Schlerf M, Atzberger C, Hill J, Buddenbaum H, Werner W, Schüler G. Retrieval of chlorophyll and nitrogen in Norway spruce Picea abies L. Karst.) using imaging spectroscopy. Int J Appl Earth Obs. 2010;12:17–26.

Schneider FD, Leiterer R, Morsdorf F, Gastellu-Etchegorry JP, Lauret N, Pfeifer N, Schaepman ME. Simulating imaging spectrometer data: 3D forest modeling based on LiDAR and in situ data. Remote Sens Environ. 2014;152:235–250.

Schneider FD, Morsdorf F, Schmid B, Petchey OL, Hueni A, Schimel DS, Schaepman ME. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat Commun. 2017;8:1441. PubMed PMC

Schneider FD, Kükenbrink D, Schaepman ME, Schimel DS, Morsdorf F. Quantifying 3D structure and occlusion in dense tropical and temperate forests using close-range LiDAR. Agric For Meteorol. 2019;268:249–257.

Singh A, Serbin SP, McNeil BE, Kingdon CC, Townsend PA. Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties. Ecol Appl. 2015;25:2180–2197. PubMed

Sobrino JA, Franch B, Mattar C, Jiménez-Muñoz JC, Corbari C. A method to estimate soil moisture from Airborne Hyperspectral Scanner (AHS) and ASTER data: application to SEN2FLEX and SEN3EXP campaigns. Remote Sens Environ. 2012;117:415–428.

Stuckens J, Verstraeten W, Delalieux S, Swennen R, Coppin P. A dorsiventral leaf radiative transfer model: development, validation and improved model inversion techniques. Remote Sens Environ. 2009;113:2560–2573.

Thimonier A, Sedivy I, Schleppi P. Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. Eur J For Res. 2010;129:543–562.

Turner D, Ritts W, Zhao M, Kurc S, Dunn A, Wofsy S, Small E, Running S. Assessing interannual variation in MODIS-based estimates of gross primary production. IEEE Trans Geosci Remote. 2006;44:1899–1907.

Ustin SL, Gitelson AA, Jacquemoud S, Schaepman ME, Asner GP, Gamon JA, Zarco-Tejada P. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens Environ. 2009;113:S67–S77.

Van Der Tol C, Verhoef W, Timmermans J, Verhoef A, Su Z. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences. 2009;6(12):3109–3129.

Verhoef W. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens Environ. 1984;16:125–141.

Vermote EF, Saleous NZ, Justice CO. Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens Environ. 2002;83:97–111.

Vermote E, Justice C, Claverie M, Franch B. Preliminary analysis of the performance of the Land-sat 8/OLI land surface reflectance product. Remote Sens Environ. 2016;185:46–56. PubMed PMC

Verrelst J, Rivera-Caicedo J. In: sensitivity analysis in earth observation modelling. Petropoulos G, Srivastava PK, editors. Elsevier; Amsterdam: 2017. A global sensitivity analysis toolbox to quantify drivers of vegetation radiative transfer models; pp. 319–339.

Verrelst J, Alonso L, Camps-Valls G, Delegido J, Moreno J. Retrieval of vegetation biophysical parameters using Gaussian process techniques. IEEE Trans Geosci Remote Sens. 2012;50:1832–1843.

Verrelst J, Alonso L, Rivera-Caicedo J, Moreno J, Camps-Valls G. Gaussian process retrieval of chlorophyll content from imaging spectroscopy data. IEEE J Sel Top Appl Earth Observ Remote Sens. 2013;6:867–874.

Verrelst J, Malenovský Z, van der Tol C, Camps-Valls G, Gastellu-Etchegorry JP, Lewis P, North P, Moreno J. Quantifying vegetation biophysical variables from imaging spectroscopy data: a review on retrieval methods. Surv Geophys. 2019 doi: 10.1007/s10712-018-9478-y. PubMed DOI PMC

Vilfan N, van der Tol C, Muller O, Rascher O, Verhoef W. Fluspect-B: a model for leaf fluorescence, reflectance and transmittance spectra. Remote Sens Environ. 2016;186:596–615.

Vilfan N, van der Tol C, Yang P, Wyber R, Malenovský Z, Robinson SA, Verhoef W. Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics. Remote Sens Environ. 2018;211:345–356.

Wallace L, Lucieer A, Malenovský Z, Turner D, Vopenka P. Assessment of forest structure using two UAV techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests. 2016;7:62.

Wang Z, Wang T, Darvishzadeh R, Skidmore AK, Jones S, Suarez L, Woodgate W, Heiden U, Heurich M, Hearne J. Vegetation indices for mapping canopy foliar nitrogen in a mixed temperate forest. Remote Sens-Basel. 2016;8:491.

Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P. Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling. Agric For Meteorol. 2004;121:37–53.

Weiss M, Baret F, Block T, Koetz B, Burini A, Scholze B, Lecharpentier P, Brockmann C, Fernandes R, et al. On Line Validation Exercise (OLIVE): a web based service for the validation of medium resolution land products. Application to FAPAR products. Remote Sens-Basel. 2014;6:4190–4216.

Weyermann J, Damm A, Kneubühler M, Schaepman ME. Correction of reflectance anisotropy effects of vegetation on airborne spectroscopy data and derived products. IEEE Trans Geosci Remote. 2014;52:616–627.

Widlowski JL, Taberner M, Pinty B, Bruniquel-Pinel V, Disney M, Fernandes R, Gastellu-Etchegorry JP, Gobron N, Kuusk A, Lavergne T, Leblanc S, et al. The third RAdiation transfer Model Intercomparison (RAMI) exercise: documenting progress in canopy reflectance modelling. J Geophys Res. 2007;112(D09111):28.

Widlowski JL, Pinty B, Lopatka M, Atzberger C, Buzica D, Chelle M, Disney M, Gastellu-Etchegorry JP, Gerboles M, Gobron N, Grau E, et al. The fourth radiation transfer model intercomparison (RAMI-IV): proficiency testing of canopy reflectance models with ISO-13528. J Geophys Res. 2013;118(D09111):13.

Widlowski JL, Mio C, Disney M, Adams J, Andredakis I, Atzberger C, Brennan J, Busetto L, Chelle M, Ceccherini G, Colombo R, et al. The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: actual canopy scenarios and conformity testing. Remote Sens Environ. 2015;169:418–437.

Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab. 2001;58:109–130.

Wyber R, Malenovský Z, Ashcroft M, Osmond B, Robinson S. Do daily and seasonal trends in leaf solar induced fluorescence reflect changes in photosynthesis, growth or light exposure? Remote Sens-Basel. 2017;9:604.

Zarco-Tejada PJ, González-Dugo V, Berni JAJ. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens Environ. 2012;117:322–337.

Zhang Y, Chen JM, Miller JR. Determining digital hemispherical photograph exposure for leaf area index estimation. Agric For Meteorol. 2005;133(1-4):166–181.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...