Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses - a review
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
25904970
PubMed Central
PMC4406171
DOI
10.1186/s13007-015-0072-8
PII: 72
Knihovny.cz E-zdroje
- Klíčová slova
- Biomass production, Chlorophyll fluorescence imaging, Hyperspectral imaging, Plant phenotyping, RGB digital imaging, Shoot growth, Thermal imaging,
- Publikační typ
- časopisecké články MeSH
Current methods of in-house plant phenotyping are providing a powerful new tool for plant biology studies. The self-constructed and commercial platforms established in the last few years, employ non-destructive methods and measurements on a large and high-throughput scale. The platforms offer to certain extent, automated measurements, using either simple single sensor analysis, or advanced integrative simultaneous analysis by multiple sensors. However, due to the complexity of the approaches used, it is not always clear what such forms of plant phenotyping can offer the potential end-user, i.e. plant biologist. This review focuses on imaging methods used in the phenotyping of plant shoots including a brief survey of the sensors used. To open up this topic to a broader audience, we provide here a simple introduction to the principles of automated non-destructive analysis, namely RGB, chlorophyll fluorescence, thermal and hyperspectral imaging. We further on present an overview on how and to which extent, the automated integrative in-house phenotyping platforms have been used recently to study the responses of plants to various changing environments.
Zobrazit více v PubMed
Araus JL, Cairns JE. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 2014;19:52–61. doi: 10.1016/j.tplants.2013.09.008. PubMed DOI
Granier C, Vile D. Phenotyping and beyond: modelling the relationships between traits. Curr Opin Plant Biol. 2014;18:96–102. doi: 10.1016/j.pbi.2014.02.009. PubMed DOI
Fiorani F, Schurr U. Future scenarios for plant phenotyping. Annu Rev Plant Biol. 2013;64:267–91. doi: 10.1146/annurev-arplant-050312-120137. PubMed DOI
Fiorani F, Rascher U, Jahne S, Schurr U. Imaging plants dynamics in heterogenic environments. Curr Opin Biotech. 2012;23:227–35. doi: 10.1016/j.copbio.2011.12.010. PubMed DOI
Walter A, Studer B, Kölliker R. Advanced phenotyping offers opportunities for improved breeding of forage and turf species. Annals Bot. 2012;110:1271–9. doi: 10.1093/aob/mcs026. PubMed DOI PMC
Jansen M, Pinto F, Nagel KA, van Dusschoten D, Fiorani F, Rascher U, et al. Non-invasive phenotyping methodologies enable the accurate characterization of growth and performance of shoots and roots. In: Tuberosa R, Graner A, Frison E, et al., editors. Genomics of Plant Genetic Resources. Volume 1. Netherlands: Springer; 2014. pp. 173–206.
Pieruschka R, Poorter H. Phenotyping plants: genes, phenes and machines. Funct Plant Biol. 2012;39:813–20. doi: 10.1071/FPv39n11_IN. PubMed DOI
Roberts MJ, Long SP, Tieszen LL, Beadle CL. Measurement of plant biomass and net primary production of herbaceous vegetation. In: Hall DO, Scurlock JMO, Bolhar-Nordenkampf HR, Leegood RC, Long SP, editors. Photosynthesis and Production in a Changing Environment. Netherlands: Springer; 1993.
Rouphael Y, Mouneimne AH, Ismail A, Mendoza-De Gyves E, Rivera CM, Colla G. Modeling individual leaf area of rose (Rosa hybrida L.) based on leaf length and width measurement. Photosynthetica. 2010;48:9–15. doi: 10.1007/s11099-010-0003-x. DOI
Cemek B, Unlukara A, Kurunc A. Nondestructive leaf-area estimation and validation for green pepper (Capsicum annuum L.) grown under different stress conditions. Photosynthetica. 2011;49:98–106. doi: 10.1007/s11099-011-0010-6. DOI
Misle E, Kahlaoui B, Hachicha M, Alvarado P. Leaf area estimation in muskmelon by allometry. Photosynthetica. 2013;51:613–20. doi: 10.1007/s11099-013-0062-x. DOI
Green JM, Appel H, MacNeal Rehrig E, Harnsomburana J, Chang J-F, Balint-Kurti P, et al. PhenoPhyte: a flexible affordable method to quantify 2D phenotypes from imagery. Plant Methods. 2012;8:45. doi: 10.1186/1746-4811-8-45. PubMed DOI PMC
Zhang X, Hause RJ, Borevitz JO. Natural genetic variation for growth and development revealed by high-throughput phenotyping in Arabidopsis thaliana. G3-Genes Genom Genet. 2012;2:29–34. PubMed PMC
Tessmer OL, Jiao Y, Cruz JA, Kramer DM, Chen J. Functional approach to high-throughput plant growth analysis. BMC Syst Biol. 2013;7(Suppl 6):S17. doi: 10.1186/1752-0509-7-S6-S17. PubMed DOI PMC
Furbank RT, Tester M. Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011;16:635–44. doi: 10.1016/j.tplants.2011.09.005. PubMed DOI
Honsdorf N, March TJ, Berger B, Tester M, Pillen K. High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS One. 2014;9 doi: 10.1371/journal.pone.0097047. PubMed DOI PMC
Walter A, Scharr H, Gilmer F, Zierer R, Nagel KA, Ernst M, et al. Dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN: a setup and procedure designed for rapid optical phenotyping of different plant species. New Phytol. 2007;174:447–55. doi: 10.1111/j.1469-8137.2007.02002.x. PubMed DOI
Golzarian MR, Frick RA, Rajendran K, Berger B, Roy S, Tester M, et al. Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods. 2011;7:1–11. doi: 10.1186/1746-4811-7-1. PubMed DOI PMC
Fehér-Juhász E, Majer P, Sass L, Lantos C, Csiszár J, Turóczy Z, et al. Phenotyping shows improved physiological traits and seed yield of transgenic wheat plants expressing the alfalfa aldose reductase under permanent drought stress. Acta Physiol Plant. 2014;36:663–73. doi: 10.1007/s11738-013-1445-0. DOI
Humplík JF, Lazár D, Fürst T, Husičková A, Hýbl M, Spíchal L. Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea (Pisum sativum L.) Plant Methods. 2015;11:1–11. doi: 10.1186/s13007-015-0043-0. PubMed DOI PMC
Berger B, de Regt B, Tester M. High-throughput phenotyping of plant shoots. In: Normanly J, editor. High-Throughput Phenotyping in Plants. New York City: Humana Press; 2012. pp. 9–20. PubMed
Camargo A, Papadopoulou D, Spyropoulou Z, Vlachonasios K, Doonan JH, Gay AP. Objective definition of Rosette shape variation using a combined computer vision and data mining approach. PLoS One. 2014;9 doi: 10.1371/journal.pone.0096889. PubMed DOI PMC
Crowell S, Falcão AX, Shah A, Wilson Z, Greenberg AJ, McCouch SR. High-resolution inflorescence phenotyping using a novel image-analysis pipeline, PANorama. Plant Physiol. 2014;165:479–95. doi: 10.1104/pp.114.238626. PubMed DOI PMC
Paulus S, Dupuis J, Riedel S, Kuhlmann H. Automated analysis of barley organs using 3d laser scanning: an approach for high throughput phenotyping. Sensors. 2014;14:12670–86. doi: 10.3390/s140712670. PubMed DOI PMC
Fanourakis D, Briese C, Max JF, Kleinen S, Putz A, Fiorani F, et al. Rapid determination of leaf area and plant height by using light curtain arrays in four species with contrasting shoot architecture. Plant Methods. 2014;10:9. doi: 10.1186/1746-4811-10-9. PubMed DOI PMC
Neumann K, Klukas C, Friedel S, Rischbeck P, Chen D, Entzian A, Stein N, Graner A, Kilian B. Dissecting spatio‐temporal biomass accumulation in barley under different water regimes using high‐throughput image analysis. Plant Cell Environ 2015. doi: 10.1111/pce.12516, in press. PubMed
Kautsky H, Hirsch A. Neue Versuche zur Kohlensureassimilation. Naturwissenschaften. 1931;19:964. doi: 10.1007/BF01516164. DOI
Lazár D. Chlorophyll a fluorescence induction. Biochim Biophys Acta. 1999;1412:1–28. doi: 10.1016/S0005-2728(99)00047-X. PubMed DOI
Lazár D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct Plant Biol. 2006;33:9–30. doi: 10.1071/FP05095. PubMed DOI
Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res. 1986;10:51–62. doi: 10.1007/BF00024185. PubMed DOI
Omasa K, Shimazaki K-I, Aiga I, Larcher W, Onoe M. Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves. Plant Physiol. 1987;84:748–52. doi: 10.1104/pp.84.3.748. PubMed DOI PMC
Daley PF, Raschke K, Ball JT, Berry JA. Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence. Plant Physiol. 1989;90:1233–8. doi: 10.1104/pp.90.4.1233. PubMed DOI PMC
Lazár D, Sušila P, Nauš J. Early detection of plant stress from changes in distributions of chlorophyll a fluorescence parameters measured with fluorescence imaging. J Fluoresc. 2006;16:173–6. doi: 10.1007/s10895-005-0032-1. PubMed DOI
Gorbe E, Calatayud A. Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Sci Hortic. 2012;138:24–35. doi: 10.1016/j.scienta.2012.02.002. DOI
Harbinson J, Prinzenberg AE, Kruijer W, Aarts MGM. High throughput screening with chlorophyll fluorescence imaging and its use in crop improvement. Curr Opin Biotech. 2012;23:221–6. doi: 10.1016/j.copbio.2011.10.006. PubMed DOI
Lazár D. Parameters of photosynthetic energy partitioning. J Plant Physiol. 2015;175:131–47. doi: 10.1016/j.jplph.2014.10.021. PubMed DOI
Jansen M, Gilmer F, Biskup B, Nagel KA, Rascher U, Fischbach A, et al. Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol. 2009;36:902–14. doi: 10.1071/FP09095. PubMed DOI
Hashimoto Y, Ino T, Kamer PJ, Naylor AW, Strain BR. Dynamic analysis of water stress of sunflower leaves by means of a thermal image processing system. Plant Physiol. 1984;76:266–9. doi: 10.1104/pp.76.1.266. PubMed DOI PMC
Kaňa R, Vass I. Thermoimaging as a tool for studying light-induced heating of leaves Correlation of heat dissipation with the efficiency of photosystem II photochemistry and non-photochemical quenching. Environ Exp Bot. 2008;64:90–6. doi: 10.1016/j.envexpbot.2008.02.006. DOI
Siddiqui ZS, Cho I-L, Park S-H, Kwon T-R, Ahn B-O, Lee G-S, et al. Phenotyping of rice in salt stress environment using high-throughput infrared imaging. Acta Bot Croat. 2014;73:149–58.
Virlet N, Lebourgeois V, Martinez S, Costes E, Labbé S, Regnard J-L. Stress indicators based on airborne thermal imagery for field phenotyping a heterogeneous tree population for response to water constraints. J Exp Bot. 2014;65:5429–42. doi: 10.1093/jxb/eru309. PubMed DOI PMC
Jones HG, Serraj R, Loveys BR, Xiong L, Wheaton A, Price AH. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct Plant Biol. 2009;36:978–89. doi: 10.1071/FP09123. PubMed DOI
Costa JM, Ortuño MF, Lopes CM, Chaves MM. Grapevine varieties exhibiting differences in stomatal response to water deficit. Funct Plant Biol. 2012;39:179–89. doi: 10.1071/FP11156. PubMed DOI
Grant OM, Davies MJ, James CM, Johnson AW, Leinonen I, Simpson DW. Thermal imaging and carbon isotope composition indicate variation amongst strawberry (Fragaria × ananassa) cultivars in stomatal conductance and water use efficiency. Environ Exp Bot. 2012;76:7–15. doi: 10.1016/j.envexpbot.2011.09.013. DOI
Costa JM, Grant OM, Chaves MM. Thermography to explore plant–environment interactions. J Exp Bot. 2013;64:3937–49. doi: 10.1093/jxb/ert029. PubMed DOI
Rouse JWJ, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the Great Plains with ERTS. In: Freden SC, Marcanti EP, Becker MA, editors. NASA SP-351. Proceedings of the 3rd Earth Resources Technology Satellite-1Symposium. Washington DC: NASA Scientific and Technical Information Office; 1974. pp. 309–17.
Gamon JA, Peñuelas J, Field CB. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ. 1992;41:35–44. doi: 10.1016/0034-4257(92)90059-S. DOI
Carter GA. Primary and secondary effects of water content on the spectra reflectance of leaves. Am J Bot. 1991;78:916–24. doi: 10.2307/2445170. DOI
Huber S, Tagesson T, Fensholt R. An automated field spectrometer system for studying VIS, NIR and SWIR anisotropy for semi-arid savanna. Remote Sens Environ. 2014;152:547–56. doi: 10.1016/j.rse.2014.06.007. DOI
Lamb DW, Schneider DA, Stanley JN. Combination active optical and passive thermal infrared sensor for low-level airborne crop sensing. Precis Agric. 2014;15:523–31. doi: 10.1007/s11119-014-9350-0. DOI
Saberioon MM, Amin MSM, Anuar AR, Gholizadeh A, Wayayok A, Khairunniza-Bejo S. Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale. Int J Appl Earth Observ Geoinform. 2014;32:35–45. doi: 10.1016/j.jag.2014.03.018. DOI
Garriga M, Retamales JB, Romero‐Bravo S, Caligari PDS, Lobos GA. Chlorophyll, anthocyanin, and gas exchange changes assessed by spectroradiometry in Fragaria chiloensis under salt stress. J Integr Plant Biol. 2014;56:505–15. doi: 10.1111/jipb.12193. PubMed DOI
Mahajan GR, Sahoo RN, Pandey RN, Gupta VK, Kumar D. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.) Precis Agric. 2014;15:499–522. doi: 10.1007/s11119-014-9348-7. DOI
Petach AR, Toomey M, Aubrecht DM, Richardson AD. Monitoring vegetation phenology using an infrared-enabled security camera. Agri Forest Meteorol. 2014;195–196:143–51. doi: 10.1016/j.agrformet.2014.05.008. DOI
Ollinger SV. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2011;189:375–94. doi: 10.1111/j.1469-8137.2010.03536.x. PubMed DOI
Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet. 2012;125:625–45. doi: 10.1007/s00122-012-1904-9. PubMed DOI PMC
Berger B, Parent B, Tester M. High-throughput shoot imaging to study drought responses. J Exp Bot. 2010;61:3519–28. doi: 10.1093/jxb/erq201. PubMed DOI
Granier C, Aguirrezabal L, Chenu K, Cookson SJ, Dauzat M, Hamard P, et al. PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water de cit in. New Phytol. 2006;169:623–35. doi: 10.1111/j.1469-8137.2005.01609.x. PubMed DOI
Skirycz A, Vandenbroucke K, Clauw P, Maleux K, De Meyer B, Dhondt S, et al. Survival and growth of Arabidopsis plants given limited water are not equal. Nat Biotechnol. 2011;29:212–4. doi: 10.1038/nbt.1800. PubMed DOI
Clauw P, Coppens F, De Beuf K, Dhondt S, Van Daele T, Maleux K, et al. Leaf Responses to Mild Drought Stress in Natural Variants of Arabidopsis thaliana. Plant Physiol. 2015;114:254–84. PubMed PMC
Tisné S, Serrand Y, Bach L, Gilbault E, Ben Ameur R, Balasse H, et al. Phenoscope: An automated large-scale phenotyping platform offering high spatial homogeneity. Plant J. 2013;74:534–44. doi: 10.1111/tpj.12131. PubMed DOI
Pereyra-Irujo GA, Gasco ED, Peirone LS, Aguirrezábal LA. GlyPh: a low-cost platform for phenotyping plant growth and water use. Funct Plant B iol. 2012;39:905–13. doi: 10.1071/FP12052. PubMed DOI
Coupel-Ledru A, Lebon É, Christophe A, Doligez A, Cabrera-Bosquet L, Péchier P, et al. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache × Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. J Exp Bot. 2014;65:6205–218. doi: 10.1093/jxb/eru228. PubMed DOI PMC
Chen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T, et al. Dissecting the Phenotypic Components of Crop Plant Growth and Drought Responses Based on High-Throughput Image Analysis. Plant Cell. 2014;26:4636–55. doi: 10.1105/tpc.114.129601. PubMed DOI PMC
Cseri A, Sass L, Törjék O, Pauk J, Vass I, Dudits D. Monitoring drought responses of barley genotypes with semi-robotic phenotyping platform and association analysis between recorded traits and allelic variants of some stress genes. Aust J Crop Sci. 2013;7:1560–70.
Petrozza A, Santaniello A, Summerer S, Di Tommaso G, Di Tommaso D, Paparelli E, et al. Physiological responses to Megafol® treatments in tomato plants under drought stress: A phenomic and molecular approach. Sci Hortic (Amsterdam). 2014;174:185–92. doi: 10.1016/j.scienta.2014.05.023. DOI
Harshavardhan VT, Van Son L, Seiler C, Junker A, Weigelt-Fischer K, Klukas C, et al. AtRD22 and AtUSPL1, Members of the Plant-Specific BURP Domain Family Involved in Arabidopsis thaliana Drought Tolerance. PLoS One. 2014;9 doi: 10.1371/journal.pone.0110065. PubMed DOI PMC
Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D. The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol. 2013;200:558–69. doi: 10.1111/nph.12383. PubMed DOI
Bresson J, Vasseur F, Dauzat M, Labadie M, Varoquaux F, Touraine B, et al. Interact to survive: Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery. PLoS One. 2014;9 doi: 10.1371/journal.pone.0107607. PubMed DOI PMC
Gupta PK, Balyan HS, Gahlaut V, Kulwal PL. Phenotyping, genetic dissection, and breeding for drought and heat tolerance in common wheat: status and prospects. Plant Breeding Reviews. 2012;36:85–147.
Vasseur F, Bontpart T, Dauzat M, Granier C, Vile D. Multivariate genetic analysis of plant responses to water deficit and high temperature revealed contrasting adaptive strategies. J Exp Bot. 2014;65:6457–69. doi: 10.1093/jxb/eru364. PubMed DOI PMC
Berger B, de Regt B, Tester M. Trait dissection of salinity tolerance with plant phenomics. In: Shabala S, Cuin TA, editors. Plant Salt Tolerance. New York City: Humana Press; 2012. pp. 399–413. PubMed
Rajendran K, Tester M, Roy SJ. Quantifying the three main components of salinity tolerance in cereals. Plant, Cell Environ. 2009;32:237–49. doi: 10.1111/j.1365-3040.2008.01916.x. PubMed DOI
Harris BN, Sadras VO, Tester M. A water-centred framework to assess the effects of salinity on the growth and yield of wheat and barley. Plant Soil. 2010;336:377–89. doi: 10.1007/s11104-010-0489-9. DOI
Schilling RK, Marschner P, Shavrukov Y, Berger B, Tester M, Roy SJ, et al. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol J. 2014;12:378–86. doi: 10.1111/pbi.12145. PubMed DOI
Hairmansis A, Berger B, Tester M, Roy SJ. Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice. 2014;7:16. doi: 10.1186/s12284-014-0016-3. PubMed DOI PMC
Chaerle L, Pineda M, Romero-Aranda R, Van Der Straeten D, Barón M. Robotized thermal and chlorophyll fluorescence imaging of pepper mild mottle virus infection in Nicotiana benthamiana. Plant Cell Physiol. 2006;47:1323–36. doi: 10.1093/pcp/pcj102. PubMed DOI
Moreau D, Schneider C, Huguet T, Salon C, Munier-Jolain N. Can differences of nitrogen nutrition level among Medicago truncatula genotypes be assessed non-destructively? Probing with a recombinant inbred lines population. Plant Signal Behav. 2009;4:30–2. doi: 10.4161/psb.4.1.7223. PubMed DOI PMC
Poiré R, Chochois V, Sirault XRR, Vogel JP, Watt M, Furbank RT. Digital imaging approaches for phenotyping whole plant nitrogen and phosphorus response in Brachypodium distachyon. J Integr Plant Biol. 2014;56:781–96. doi: 10.1111/jipb.12198. PubMed DOI
Neilson EH, Edwards AM, Blomstedt CK, Berger B, Moller BL, Gleadow RM. Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. J Exp Bot. 2015;66:1817–32. doi: 10.1093/jxb/eru526. PubMed DOI PMC
Chaerle L, Hagenbeek D, Vanrobaeys X, Van Der Straeten D. Early detection of nutrient and biotic stress in Phaseolus vulgaris. Int J Remot Sens. 2007;28:3479–92. doi: 10.1080/01431160601024259. DOI
Devacht S, Lootens P, Baert J, Van Waes J, Van Bockstaele E, Roldán-Ruiz I. Evaluation of cold stress of young industrial chicory (Cichorium intybus L.) plants by chlorophyll a fluorescence imaging. I. Light induction curve. Photosynthetica. 2011;49:161–71. doi: 10.1007/s11099-011-0015-1. DOI
Lootens P, Devacht S, Baert J, Van Waes J, Van Bockstaele E, Roldán-Ruiz I. Evaluation of cold stress of young industrial chicory (Cichorium intybus L.) by chlorophyll a fluorescence imaging. II. Dark relaxation kinetics. Photosynthetica. 2011;49:185–94. doi: 10.1007/s11099-011-0025-z. DOI
Mishra A, Mishra KB, Höermiller II, Heyer AG, Nedbal L. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions. Plant Signal Behav. 2011;6:301. doi: 10.4161/psb.6.2.15278. PubMed DOI PMC
Can plant hormonomics be built on simple analysis? A review
Presence and future of plant phenotyping approaches in biostimulant research and development