High-Throughput Plant Phenotyping for Developing Novel Biostimulants: From Lab to Field or From Field to Lab?

. 2018 ; 9 () : 1197. [epub] 20180814

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30154818

Plant biostimulants which include bioactive substances (humic acids, protein hydrolysates and seaweed extracts) and microorganisms (mycorrhizal fungi and plant growth promoting rhizobacteria of strains belonging to the genera Azospirillum, Azotobacter, and Rhizobium spp.) are gaining prominence in agricultural systems because of their potential for improving nutrient use efficiency, tolerance to abiotic stressors, and crop quality. Highly accurate non-destructive phenotyping techniques have attracted the interest of scientists and the biostimulant industry as an efficient means for elucidating the mode of biostimulant activity. High-throughput phenotyping technologies successfully employed in plant breeding and precision agriculture, could prove extremely useful in unraveling biostimulant-mediated modulation of key quantitative traits and would also facilitate the screening process for development of effective biostimulant products in controlled environments and field conditions. This perspective article provides an innovative discussion on how small, medium, and large high-throughput phenotyping platforms can accelerate efforts for screening numerous biostimulants and understanding their mode of action thanks to pioneering sensor and image-based phenotyping techniques. Potentiality and constraints of small-, medium-, and large-scale screening platforms are also discussed. Finally, the perspective addresses two screening approaches, "lab to field" and "field to lab," used, respectively, by small/medium and large companies for developing novel and effective second generation biostimulant products.

Zobrazit více v PubMed

Araus J. L., Cairns J. E. (2014). Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19 52–61. 10.1016/j.tplants.2013.09.008 PubMed DOI

Bonini P., Long D. H., Canaguier R., Colla G., Leman J. (2017). Seed Treatments with Endophytic Fungi and Biostimulant Compounds Enhance Yield of Corn and Soybean. the 3rd World Congress on the Use of Biostimulants in Agriculture, 27-30 November 2017. Miami, FL: Book of Abstracts, 147.

Calvo P., Nelson L., Kloepper J. W. (2014). Agricultural uses of plant biostimulants. Plant Soil 383 3–41. 10.1007/s11104-014-2131-8 DOI

Casa R., Castaldi F., Pascucci S., Basso B., Pignatti S. (2013). Geophysical and hyperspectral data fusion techniques for in-field estimation of soil properties. Vadose Zone J. 12:4 10.2136/vzj2012.0201 DOI

Colla G., Rouphael Y. (2015). Biostimulants in horticulture. Sci. Hortic. 196 39-48. 10.1016/j.scienta.2015.10.044 DOI

Colla G., Rouphael Y., Bonini P., Cardarelli M. (2015). Coating seeds with endophytic fungi enhances growth, uptake nutrient, yield and grain quality of winter wheat. Int. J. Plant Prod. 9 171–190.

De Diego N., Fürst T., Humplík J. F., Ugena L., Podlešáková K., Spíchal L. (2017). An automated method for high-throughput screening of Arabidopsis rosette growth in multi-well plates and Its validation in stress conditions. Front. Plant Sci. 8:1702. 10.3389/fpls.2017.01702 PubMed DOI PMC

Deery D., Jimenez-Berni J., Jones H., Sirault X., Furbank R. (2014). Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 4 349–379. 10.3390/agronomy4030349 DOI

du Jardin P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196 3–14. 10.1016/j.scienta.2015.09.021 DOI

Enciso J., Maeda M., Landivar J., Jung J., Chang A. (2017). A ground based platform for high throughput phenotyping. Comp. Elect. Agric. 141 286–291. 10.1016/j.compag.2017.08.006 DOI

Ertani A., Pizzeghello D., Francioso O., Sambo P., Sanchez-Cortes S., Nardi S. (2014). Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: chemical and metabolomic approaches. Front. Plant Sci. 5:375. 10.3389/fpls.2014.00375 PubMed DOI PMC

Ertani A., Schiavon M., Muscolo A., Nardi S. (2013). Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 364 145–158.

Friedli M., Kirchgessner N., Grieder C., Liebisch F., Mannale M., Walter A. (2016). Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions. Plant Methods 12:9. 10.1186/s13007-016-0109-7 PubMed DOI PMC

Halder V., Kombrink E. (2015). Facile high-throughput forward chemical genetic screening by in situ monitoring of glucuronidase-based reporter gene expression in Arabidopsis thaliana. Front. Plant Sci. 6:13. 10.3389/fpls.2015.00013 PubMed DOI PMC

Humplík J. F., Lazár D., Husičková A., Spíchal L. (2015). Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses – a review. Plant Methods 11:29. 10.1186/s13007-015-0072-8 PubMed DOI PMC

Jones H. G., Hutchinson P. A., May T., Jamali H., Deery D. M. (2018). A practical method using a network of fixed infrared sensors for estimating crop canopy conductance and evaporation rate. Biosyst. Eng. 165 59–69. 10.1016/j.biosystemseng.2017.09.012 DOI

Kirchgessner N., Liebisch F., Yu K., Pfeifer J., Friedli M., Hund A., et al. (2017). The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system. Funct. Plant Biol. 44 154–168. PubMed

Kjaer K. H., Ottosen C. O. (2015). 3D laser triangulation for plant phenotyping in challenging environments. Sensors 15 13533–13547. 10.3390/s150613533 PubMed DOI PMC

Lucini L., Rouphael Y., Cardarelli M., Bonini P., Baffi C., Colla G. (2018). A vegetal biopolymer-based biostimulant promoted root growth in melon while triggering brassinosteroids and stress-related compounds. Front. Plant Sci 9:472. 10.3389/fpls.2018.00472 PubMed DOI PMC

Lucini L., Rouphael Y., Cardarelli M., Canaguier R., Kumar P., Colla G. (2015). The effect of a plant-derived protein hydrolysate on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic. 182 124–133. 10.1016/j.scienta.2014.11.022 DOI

Madec S., Baret F., De Solan B., Thomas S., Dutartre D., Jezequel S., et al. (2017). High-throughput phenotyping of plant height: comparing unmanned aerial vehicles and ground lidar estimates. Front. Plant Sci. 8:2002. 10.3389/fpls.2017.02002 PubMed DOI PMC

Mishra K. B., Mishra A., Klem K., Govindjee (2016). Plant phenotyping: a perspective. Ind. J. Plant Physiol. 21 514–527. 10.1007/s40502-016-0271-y DOI

Mishra P., Asaari M. S. M., Herrero-Langreo A., Lohumi S., Diezma B., Scheunders P. (2017). Close range hyperspectral imaging of plants: a review. Biosyst. Eng. 164 49–67. 10.1016/j.biosystemseng.2017.09.009 DOI

Naito H., Ogawa S., Valencia M. O., Mohri H., Urano Y., Hosoi F., et al. (2017). Estimating rice yield related traits and quantitative trait loci analysis under different nitrogen treatments using a simple tower-based field phenotyping system with modified single-lens reflex cameras. ISPRS J. Photog. Remote Sens. 125 50–62. 10.1016/j.isprsjprs.2017.01.010 DOI

Paez-Garcia A., Motes C. M., Scheible W. R., Chen R., Blancaflor E. B., Monteros M. J. (2015). Root traits and phenotyping strategies for plant improvement. Plants 4 334–355. 10.3390/plants4020334 PubMed DOI PMC

Pauli D., Chapman S. C., Bart R., Topp C. N., Lawrence-Dill C. J., Poland J., et al. (2016). The quest for understanding phenotypic variation via integrated approaches in the field environment. Plant Physiol. 172 622–634. 10.1016/j.isprsjprs.2017.01.010 PubMed DOI PMC

Petrozza A., Santaniello A., Summerer S., Di Tommaso G., Di Tommaso D., Paparelli E., et al. (2014). Physiological responses to Megafol treatments in tomato plants under drought stress: a phenomic and molecular approach. Sci. Hortic. 174 185–192. 10.1016/j.scienta.2014.05.023 DOI

Rahaman M. M., Chen D., Gillani Z., Klukas C., Chen M. (2015). Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front. Plant Sci. 6:619. 10.3389/fpls.2015.00619 PubMed DOI PMC

Rodriguez-Furlán C., Miranda G., Reggiardo M., Hicks G. R., Norambuena L. (2016). High throughput selection of novel plant growth regulators: assessing the translatability of small bioactive molecules from Arabidopsis to crops. Plant Sci. 245 50–60. 10.1016/j.plantsci.2016.01.001 PubMed DOI

Rouphael Y., Colla G., Giordano M., El-Nakhel C., Kyriacou M. C., De Pascale S. (2017). Foliar applications of a legume-derived protein hydrolysate elicit dose dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 226 353–360. 10.1016/j.scienta.2017.09.007 DOI

Salas Fernandez M. G., Bao Y., Tang L., Schnable P. S. (2017). A high-throughput, field-based phenotyping technology for tall biomass crops. Plant Physiol. 174 2008–2022. 10.1104/pp.17.00707 PubMed DOI PMC

Sankaran S., Khot L. R., Espinoza C. Z., Jarolmasjed S., Sathuvalli V. R., Vandemark G. J., et al. (2015). Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. Eur. J. Agron. 70 112–123. 10.1016/j.eja.2015.07.004 DOI

Shakoor N., Lee S., Mockler T. C. (2017). High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant Biol. 38 184–192. 10.1016/j.pbi.2017.05.006 PubMed DOI

Tardieu F., Cabrera-Bosquet L., Pridmore T., Bennett M. (2017). Plant phenomics, from sensors to knowledge. Curr. Biol. 27 R770–R783. 10.1016/j.cub.2017.05.055 PubMed DOI

Virlet N., Sabermanesh K., Sadeghi-Tehran P., Hawkesford M. J. (2017). Field scanalyzer: an automated robotic field phenotyping platform for detailed crop monitoring. Funct. Plant Biol. 44 143–153. 10.1071/fp16163 PubMed DOI

Williams D., Britten A., McCallum S., Jones H. G., Aitkenhead M., Karley A., et al. (2017). A method for automatic segmentation and splitting of hyperspectral images of raspberry plants collected in field conditions. Plant Methods 13:74. 10.1186/s13007-017-0226-y PubMed DOI PMC

Yang G., Liu J., Zhao C., Li Z., Huang Y., Yu H., et al. (2017). Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Front. Plant Sci. 8:1111. 10.3389/fpls.2017.01111 PubMed DOI PMC

Zhang X., Schmidt R. E. (1997). The impact of growth regulators on alpha-tocopherol status of water-stressed Poa pratensis L. Int. Turfgrass Soc. Res. J. 8 1364–2137.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Functional phenomics for improved climate resilience in Nordic agriculture

. 2022 Sep 03 ; 73 (15) : 5111-5127.

Presence and future of plant phenotyping approaches in biostimulant research and development

. 2022 Sep 03 ; 73 (15) : 5199-5212.

Deciphering the Potential Role of Symbiotic Plant Microbiome and Amino Acid Application on Growth Performance of Chickpea Under Field Conditions

. 2022 ; 13 () : 852851. [epub] 20220512

Seed Priming With Protein Hydrolysates Improves Arabidopsis Growth and Stress Tolerance to Abiotic Stresses

. 2021 ; 12 () : 626301. [epub] 20210608

Integration of Phenomics and Metabolomics Datasets Reveals Different Mode of Action of Biostimulants Based on Protein Hydrolysates in Lactuca sativa L. and Solanum lycopersicum L. Under Salinity

. 2021 ; 12 () : 808711. [epub] 20220203

Hormopriming to Mitigate Abiotic Stress Effects: A Case Study of N 9-Substituted Cytokinin Derivatives With a Fluorinated Carbohydrate Moiety

. 2020 ; 11 () : 599228. [epub] 20201210

A Combined Phenotypic and Metabolomic Approach for Elucidating the Biostimulant Action of a Plant-Derived Protein Hydrolysate on Tomato Grown Under Limited Water Availability

. 2019 ; 10 () : 493. [epub] 20190503

Understanding the Biostimulant Action of Vegetal-Derived Protein Hydrolysates by High-Throughput Plant Phenotyping and Metabolomics: A Case Study on Tomato

. 2019 ; 10 () : 47. [epub] 20190208

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace