An Automated Method for High-Throughput Screening of Arabidopsis Rosette Growth in Multi-Well Plates and Its Validation in Stress Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29046681
PubMed Central
PMC5632805
DOI
10.3389/fpls.2017.01702
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, high-throughput screening assay, multi-well plates, rosette growth, stress conditions,
- Publikační typ
- časopisecké články MeSH
High-throughput plant phenotyping platforms provide new possibilities for automated, fast scoring of several plant growth and development traits, followed over time using non-invasive sensors. Using Arabidopsis as a model offers important advantages for high-throughput screening with the opportunity to extrapolate the results obtained to other crops of commercial interest. In this study we describe the development of a highly reproducible high-throughput Arabidopsis in vitro bioassay established using our OloPhen platform, suitable for analysis of rosette growth in multi-well plates. This method was successfully validated on example of multivariate analysis of Arabidopsis rosette growth in different salt concentrations and the interaction with varying nutritional composition of the growth medium. Several traits such as changes in the rosette area, relative growth rate, survival rate and homogeneity of the population are scored using fully automated RGB imaging and subsequent image analysis. The assay can be used for fast screening of the biological activity of chemical libraries, phenotypes of transgenic or recombinant inbred lines, or to search for potential quantitative trait loci. It is especially valuable for selecting genotypes or growth conditions that improve plant stress tolerance.
Zobrazit více v PubMed
Arvidsson S., Pérez-Rodríguez P., Mueller-Roeber B. (2011). A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytol. 191 895–907. 10.1111/j.1469-8137.2011.03756.x PubMed DOI
Awlia M., Nigro A., Fajkus J., Schmöckel S. M., Negrão S., Santelia D., et al. (2016). High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front. Plant Sci. 7:1414 10.3389/fpls.2016.01414 PubMed DOI PMC
Choi W.-G., Toyota M., Kim S.-H., Hilleary R., Gilroy S. (2014). Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc. Natl. Acad. Sci. U.S.A. 111 6497–6502. 10.1073/pnas.1319955111 PubMed DOI PMC
Clauw P., Coppens F., De Beuf K., Dhondt S., Van Daele T., Maleux K., et al. (2015). Leaf responses to mild drought stress in natural variants of Arabidopsis. Plant Physiol. 167 800–816. 10.1104/pp.114.254284 PubMed DOI PMC
Dolata J., Bajczyk M., Bielewicz D., Niedojadlo K., Niedojadlo J., Pietrykowska H., et al. (2016). Salt stress reveals a new role for ARGONAUTE 1 in miRNA biogenesis at the transcriptional and post-transcriptional levels. Plant Physiol. 172 297–312. 10.1104/pp.16.00830 PubMed DOI PMC
Donohue K. (2002). Germination timing influences natural selection on life-history characters in Arabidopsis thaliana. Ecology 83 1006–1016.
Dubey R. S. (1997). “Nitrogen metabolism in plants under salt stress,” in Strategies to Improve Salt Tolerance in Higher Plants, eds Jaiwal P. K., Singh R., Gulati A. (New Delhi: IBH publications; ).
Eckstein A., Zieba P., Gabryś H. (2012). Sugar and light effects on the condition of the photosynthetic apparatus of Arabidopsis thaliana cultured in vitro. J. Plant Growth Regul. 31 90–101. 10.1007/s00344-011-9222-z DOI
Feng J., Li J., Gao Z., Lu Y., Yu J., Zheng Q., et al. (2015). SKIP confers osmotic tolerance during salt stress by controlling alternative gene splicing in Arabidopsis. Mol. Plant 8 1038–1052. 10.1016/j.molp.2015.01.011 PubMed DOI
Flood P. J., Kruijer W., Schnabel S. K., van der Schoor R., Jalink H., Snel J. F. H., et al. (2016). Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods 12 14 10.1186/s13007-016-0113-y PubMed DOI PMC
Granier C., Aguirrezabal L., Chenu K., Cookson S. J., Dauzat M., Hamard P., et al. (2006). PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol. 169 623–635. PubMed
Gunes A., Inal A., Alpaslan M., Eraslan F., Bagci E. G., Cicek N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J. Plant Physiol. 164 728–736. 10.1016/j.jplph.2005.12.009 PubMed DOI
Gupta B., Huang B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. Genomics 2014 1–19. 10.1155/2014/701596 PubMed DOI PMC
Hoffmann W. A., Poorter H. (2002). Avoiding bias in calculations of relative growth rate. Ann. Bot. 80 37–42. 10.1093/aob/mcf140 PubMed DOI PMC
Humplík J. F., Lazár D., Fürst T., Husičková A., Hýbl M., Spíchal L. (2015a). Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea (Pisum sativum L.). Plant Methods 11 20 10.1186/s13007-015-0063-9 PubMed DOI PMC
Humplík J. F., Lazár D., Husičková A., Spíchal L. (2015b). Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses – a review. Plant Methods 11 29 10.1186/s13007-015-0072-8 PubMed DOI PMC
Jansen M., Gilmer F., Biskup B., Nagel K. A., Rascher U., Fischbach A., et al. (2009). Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via Growscreen Fluoro allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct. Plant Biol. 36 902–914. 10.1071/FP09095 PubMed DOI
Joosen R. V. L., Arends D., Willems L. A. J., Ligterink W., Jansen R. C., Hilhorst H. W. M. (2012). Visualizing the genetic landscape of Arabidopsis seed performance. Plant Physiol. 158 570–589. 10.1104/pp.111.186676 PubMed DOI PMC
Klukas C., Chen D., Pape J.-M. (2014). Integrated analysis platform: an open-source information system for high-throughput plant phenotyping. Plant Physiol. 165 506–518. 10.1104/pp.113.233932 PubMed DOI PMC
Koksal N., Alkan-Torun A., Kulahlioglu I., Ertargin E., Karalar E. (2016). Ion uptake of marigold under saline growth conditions. Springerplus 5 139 10.1186/s40064-016-1815-3 PubMed DOI PMC
Krajewski P., Chen D., Ćwiek H., Van Dijk A. D. J., Fiorani F., Kersey P., et al. (2015). Towards recommendations for metadata and data handling in plant phenotyping. J. Exp. Bot. 66 5417–5427. 10.1093/jxb/erv271 PubMed DOI
Li L., Zhang Q., Huang D. (2014). A review of imaging techniques for plant phenotyping. Sensors (Switzerland) 14 20078–20111. 10.3390/s141120078 PubMed DOI PMC
Mishra A., Heyer A. G., Mishra K. B. (2014). Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions. Plant Methods 10:38 10.1186/1746-4811-10-38 PubMed DOI PMC
Munns R., Tester M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59 651–681. 10.1146/annurev.arplant.59.032607.092911 PubMed DOI
Murashige T., Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15 473–497. 10.1111/j.1399-3054.1962.tb08052.x DOI
Ohto M., Onai K., Furukawa Y., Aoki E., Araki T., Nakamura K. (2001). Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol. 127 252–261. 10.1104/pp.127.1.252 PubMed DOI PMC
Pérez-Alfocea F., Balibrea M. E., Cruz A. S., Estañ M. T. (1996). Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil 180 251–257. 10.1007/BF00015308 DOI
Pitzschke A., Datta S., Persak H. (2014). Salt stress in Arabidopsis: lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3. Mol. Plant 7 722–738. 10.1093/mp/sst157 PubMed DOI PMC
Rahaman M. M., Chen D., Gillani Z., Klukas C., Chen M. (2015). Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front. Plant Sci. 6:619 10.3389/fpls.2015.00619 PubMed DOI PMC
Recipe (2010). MS Medium for Arabidopsis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Rodriguez-Furlán C., Miranda G., Reggiardo M., Hicks G. R., Norambuena L. (2016). High throughput selection of novel plant growth regulators: assessing the translatability of small bioactive molecules from Arabidopsis to crops. Plant Sci. 245 50–60. 10.1016/j.plantsci.2016.01.001 PubMed DOI
Rousseau D., Chéné Y., Belin E., Semaan G., Trigui G., Boudehri K., et al. (2015). Multiscale imaging of plants: current approaches and challenges. Plant Methods 11 6 10.1186/s13007-015-0050-1 PubMed DOI PMC
Skirycz A., Vandenbroucke K., Clauw P., Maleux K., De Meyer B., Dhondt S., et al. (2011). Survival and growth of Arabidopsis plants given limited water are not equal. Nat. Biotechnol. 29 212–214. 10.1038/nbt.1800 PubMed DOI
Tomé F., Jansseune K., Saey B., Grundy J., Vandenbroucke K., Hannah M. A., et al. (2017). rosettR: protocol and software for seedling area and growth analysis. Plant Methods 13 13 10.1186/s13007-017-0163-9 PubMed DOI PMC
Tuna A. L., Kaya C., Ashraf M., Altunlu H., Yokas I., Yagmur B. (2007). The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ. Exp. Bot. 59 173–178. 10.1016/j.envexpbot.2005.12.007 DOI
Vasseur F., Bontpart T., Dauzat M., Granier C., Vile D. (2014). Multivariate genetic analysis of plant responses to water deficit and high temperature revealed contrasting adaptive strategies. J. Exp. Bot. 65 6457–6469. 10.1093/jxb/eru364 PubMed DOI PMC
Wang T., Tohge T., Ivakov A., Mueller-Roeber B., Fernie A. R., Mutwil M., et al. (2015). Salt-related MYB1 coordinates abscisic acid biosynthesis and signaling during salt stress in Arabidopsis. Plant Physiol. 169 1027–1041. 10.1104/pp.15.00962 PubMed DOI PMC
Zhao Y., Pan Z., Zhang Y., Qu X., Zhang Y., Yang Y., et al. (2013). The actin-related protein2/3 complex regulates mitochondrial-associated calcium signaling during salt stress in Arabidopsis. Plant Cell 25 4544–4559. 10.1105/tpc.113.117887 PubMed DOI PMC
Sulfonation of IAA in Urtica eliminates its DR5 auxin activity
Comprehensive LC-MS/MS analysis of nitrogen-related plant metabolites
Functional phenomics for improved climate resilience in Nordic agriculture
Presence and future of plant phenotyping approaches in biostimulant research and development
Bayesian approach for analysis of time-to-event data in plant biology