Drought-Tolerance Gene Identification Using Genome Comparison and Co-Expression Network Analysis of Chromosome Substitution Lines in Rice

. 2020 Oct 14 ; 11 (10) : . [epub] 20201014

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33066648

Drought stress limits plant growth and productivity. It triggers many responses by inducing changes in plant morphology and physiology. KDML105 rice is a key rice variety in Thailand and is normally grown in the northeastern part of the country. The chromosome segment substitution lines (CSSLs) were developed by transferring putative drought tolerance loci (QTLs) on chromosome 1, 3, 4, 8, or 9 into the KDML105 rice genome. CSSL104 is a drought-tolerant line with higher net photosynthesis and leaf water potential than KDML105 rice. The analysis of CSSL104 gene regulation identified the loci associated with these traits via gene co-expression network analysis. Most of the predicted genes are involved in the photosynthesis process. These genes are also conserved in Arabidopsis thaliana. Seven genes encoding chloroplast proteins were selected for further analysis through characterization of Arabidopsis tagged mutants. The response of these mutants to drought stress was analyzed daily for seven days after treatment by scoring green tissue areas via the PlantScreen™ XYZ system. Mutation of these genes affected green areas of the plant and stability index under drought stress, suggesting their involvement in drought tolerance.

Zobrazit více v PubMed

Saikumar S., Gouda P.K., Saiharini A., Varma C.M.K., Vineesha G., Padmavathi G., Shenoy V.V. Major QTL for enhancing rice grain yield under lowland reproductive drought stress identify using O. sativa/O. glaberrima introgression line. Field Crops Res. 2014;163:119–131. doi: 10.1016/j.fcr.2014.03.011. DOI

Tulyathan V., Leeharatanaluk B. Change in quality of rice (Oryza sativa L.) cv. Khao Dawk Mali 105 during storage. J. Food Biochem. 2007;31:415–425. doi: 10.1111/j.1745-4514.2007.00125.x. DOI

Siangliw J., Jongdee B., Pantuwan G., Toojinda T. Developing KDML105 backcross introgression lines using marker-assisted selection for QTLs associated with drought tolerance in rice. Sci. Asia. 2007;33:207–214. doi: 10.2306/scienceasia1513-1874.2007.33.207. DOI

Siddique M.R.B., Hamid A., Islam M.S. Drought stress effects on water relations of wheat. Bot. Bull. Acad. Sin. 2001;41:35–39.

Hussain M., Malik M.A., Farooq M., Ashraf M.Y., Cheema M.A. Improving drought tolerance by exogenous application of glycine-betaine and salicylic acid in sunflower. J. Agron. Crop Sci. 2008;194:193. doi: 10.1111/j.1439-037X.2008.00305.x. DOI

Cornic G., Massacci A. Leaf photosynthesis under drought. In: Baker N.R., editor. Photosynthesis and the Environment. Kluwer Academic Publishers; Dordrecht, The Netherlands: 1996. pp. 347–366.

Anjum F., Yaseen M., Rasul E., Wahid A., Anjum S. Water stress in barley (Hordeum valgare L.). I. effect on chemical composition and chlorophyll content. Pak. J. Agron. Sci. 2003;40:45–49.

Du Y.C., Kawamitsu Y., Nose A., Hiyane S., Murayama S., Wasano K., Uchida Y. Effect on water stress on carbon exchange rate and activities of photosynthetic enzymes in leaves of sugarcane (Saccharum sp.) Aust. J. Plant Physiol. 1996;23:719–726. doi: 10.1071/PP9960719. DOI

Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009;29:185–212. doi: 10.1051/agro:2008021. DOI

Zargar S.M., Gupta N., Nazir M., Mahajan R., Malik F.A., Sofi N.R., Shikari A.B., Salgotra R.K. Impact of drought on photosynthesis: Molecular perspective. Plant Gene. 2017;11:154–159. doi: 10.1016/j.plgene.2017.04.003. DOI

Kanjoo V., Punyawaew K., Siangliw J.L., Jearakongman S., Vanavichit A., Toojinda T. Evaluation of agronomic traits in chromosome segment substitution lines of KDML105 containing drought tolerance QTL under drought stress. Rice Sci. 2012;19:117–124. doi: 10.1016/S1672-6308(12)60030-4. DOI

Punchkhon C., Kasetranunt W., Kositsup B., Siengliw J., Chadchawan S. Evaluation of drought tolerance ability at seedling stage of CSSL rice populations with drought tolerant genes on chromosome 8; Proceedings of the 9th Botanical Conference of Thailand; Bangkok, Thailand. 3–5 June 2015; pp. 61–71.

Vajrabhaya M., Vajrabhaya T. Somaclonal variation of salt tolerance in rice. In: Bajaj Y.P.S., editor. Biotechnology Agriculture Forestry. Springer; Berlin/Heidelberg, Germany: 1991. pp. 368–382.

Pongprayoon W., Roytrakul S., Pichayangkura R., Chadchawan S. The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.) Plant Growth Regul. 2013;70:159–173. doi: 10.1007/s10725-013-9789-4. DOI

Chintakovid N., Maipoka M., Phaonakrop N., Mickelbart M.V., Roytrakul S., Chadchawan S. Proteomic analysis of drought-responsive proteins in rice reveals photosynthesis-related adaptations to drought stress. Acta Physiol. Plant. 2017;39:240. doi: 10.1007/s11738-017-2532-4. DOI

Missirian V., Comai L., Filkov V. Statistical mutation calling from sequenced overlapping DNA pools in TILLING experiments. BMC Bioinf. 2011;12:287. doi: 10.1186/1471-2105-12-287. PubMed DOI PMC

Ouyang S., Zhu L., Hamilton J., Lin H., Campbell M., Childs K., Thibaud-Nissen F., Malek R.L., Lee Y., Zheng L., et al. The TIGR rice genome annotation resource: Improvements and new features. Nucleic Acids Res. 2007;35:883–887. doi: 10.1093/nar/gkl976. PubMed DOI PMC

Kawahara Y., de la Bastide M., Hamilton J.P., Kanamori H., McCombie W.R., Ouyang S., Schwartz D.C., Tanaka T., Zhou S., Childs K.L., et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice. 2013;6:4. doi: 10.1186/1939-8433-6-4. PubMed DOI PMC

Cao P., Jung K., Choi D., Hwang D., Zhu J., Ronald P. The rice oligonucleotide array database: An atlas of rice gene expression. Rice. 2012;5:17. doi: 10.1186/1939-8433-5-17. PubMed DOI PMC

Xia L., Zou D., Sang J., Xu X.J., Yin H.Y., Li M.W., Wu S.Y., Hu S.N., Hao L.L., Zhang Z. Rice Expression Database (RED): An integrated RNA-Seq-derived gene expression database for rice. J. Genet. Genom. 2017;44:235–241. doi: 10.1016/j.jgg.2017.05.003. PubMed DOI

Lamesch P., Berardini T.Z., Li D., Swarbreck D., Wilks C., Sasidharan R., Muller R., Dreher K., Alexander D.L., Garcia-Hernandez M., et al. The arabidopsis information resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Res. 2012;40:D1202–D1210. doi: 10.1093/nar/gkr1090. PubMed DOI PMC

De Diego N., Fürst T., Humplik J., Ugena L., Podlešáková K., Spíchal L. An automated method for high-throughput screening of Arabidopsis rosette growth in multi-well plates and its validation stress condition. Front. Plan Sci. 2017;8:1702. doi: 10.3389/fpls.2017.01702. PubMed DOI PMC

Yonemaru J., Yamamoto T., Fukuoka S., Uga Y., Hori K., Yano M. Q-TARO:QTL Annotation rice online database. Rice. 2010;3:194. doi: 10.1007/s12284-010-9041-z. DOI

Tu C.J., Schuenemann D., Hoffman N.E. Chloroplast FtsY, chloroplast signal recognition particle, and GTP are required to reconstitute the soluble phase of light-harvesting chlorophyll protein transport into thylakoid membranes. J. Biochem. Chem. 1999;274:27219–27224. doi: 10.1074/jbc.274.38.27219. PubMed DOI

Rumeau D., Bécuwe-Linka N., Beyly A., Louwagie M., Garin J., Peltier G. New subunit NDH-M, -N, -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants. Plant Cell. 2005;17:219–232. doi: 10.1105/tpc.104.028282. PubMed DOI PMC

Brooks M.D., Sylak-Glassman E.J., Fleming G.R., Niyogi K.K. A thioredoxin-like/β-propeller protein maintains the efficiency of light harvesting in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2013;110:E2733–E2740. doi: 10.1073/pnas.1305443110. PubMed DOI PMC

Adamiec M., Gibasiewicz K., Luciński R., Giera W., Chełminiak P., Szewczyk S., Sipińska W., Grondelle R., Jackowski G. Excitation energy transfer and charge separation are affected in Arabidopsis thaliana mutants lacking light-harvesting chlorophyll a/b binding protein Lhcb3. J Photochem Photobiol. B Biol. 2015;153:423–428. doi: 10.1016/j.jphotobiol.2015.11.002. PubMed DOI

Guan Z., Wang W., Yu X., Lin W., Maio Y. Comparative proteomic analysis of coregulation of CIPK14 and WHIRLY1/3 mediated pale yellowing of leaves in Arabidopsis. Int. J. Mol. Sci. 2018;19:2331. doi: 10.3390/ijms19082231. PubMed DOI PMC

Hertle A.P., Blunder T., Wunder T., Pesaresi P., Pribil M., Armbruster U., Leister D. PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol. Cell. 2013;49:511–523. doi: 10.1016/j.molcel.2012.11.030. PubMed DOI

Hey D., Grimm B. ONE-HELIX PROTEIN2 (OHP2) is required for the stability of OHP1 and assembly factor HCF244 and is functionally linked to PSII biogenesis. Plant Physiol. 2018;177:1453–1472. doi: 10.1104/pp.18.00540. PubMed DOI PMC

Li Y., Liu B., Zhang J., Kong F., Zhang L., Meng H., Li W., Rochaix J.D., Li D., Peng L. OHP1, OHP2, and HCF244 form a transient functional complex with the photosystem II reaction center. Plant Physiol. 2019;179:195–208. doi: 10.1104/pp.18.01231. PubMed DOI PMC

Chotewutmontri P., Williams-Carrier R., Barkan A. Exploring the link between photosystem II assembly and translation of the chloroplast psbA mRNA. Plants. 2020;9:152. doi: 10.3390/plants9020152. PubMed DOI PMC

Motohashi R., Yamazaki T., Myouga F., Ito T., Ito K., Satou M., Kobayashi M., Nagata N., Yoshida S., Nagashima A., et al. Chloroplast ribosome release factor 1 (AtcpRF1) is essential for chloroplast development. Plant Mol. Biol. 2007;646:481–497. doi: 10.1007/s11103-007-9166-7. PubMed DOI

Tezara W., Mitchell V.J., Driscoll S.D., Lawlor D.W. Water stress inhibits plant photosynthesis by decreaseing coupling factor and ATP. Nature. 1999;401:914–917. doi: 10.1038/44842. DOI

Teulat B., Monneveux P., Wery J., Borries C., Souyris I., Charrier A., This D. Relationships between relative water content and growth parameters under water stress in barley: A QTL study. New Phytol. 1997;137:99–107. doi: 10.1046/j.1469-8137.1997.00815.x. DOI

González L., González-Vilar M. Handbook of Plant Ecophysiology Techniques. Springer; Berlin/Heidelberg, Germany: 2001. Determination of relative water content; pp. 207–212.

Nikkanen L., Toivola J., Trotta A., Diaz M.G., Tikkanen M., Aro E., Rintamäki E. Regulation of cyclic electron flow by chloroplast NADPH-dependent thioredoxin system. Plant Direct. 2018;2:e00093. doi: 10.1002/pld3.93. PubMed DOI PMC

Damkjaer J.T., Kereïche S., Johnson M., Kovacs L., Kiss A.Z., Boekema E.J., Ruban A.V., Horton P., Jansson S. The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis. Plant Cell. 2009;21:3245–3256. doi: 10.1105/tpc.108.064006. PubMed DOI PMC

Wang L., Ouyang M., Li Q., Zou M., Gou J., Ma J., Lu C., Zhang L. The Arabidopsis chloroplast ribosome recycling factor is essential for embryogenesis and chloroplast biogenesis. Plant Mol. Biol. 2010;74:47–59. doi: 10.1007/s11103-010-9653-0. PubMed DOI

DalCorso G., Pesaresi P., Masiero S., Aseeva E., Schünemann D., Finazzi G., Joliot P., Barbato R., Leister D. A complex containing PGRL1 and PGRL5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell. 2008;132:273–285. doi: 10.1016/j.cell.2007.12.028. PubMed DOI

Suorsa M., Rossi F., Tadini L., Labs M., Colombo M., Jahns P., Kater M.M., Leister D., Finazzi G., Aro E., et al. PGRL5-PGRL1-dependent cyclic electron transport modulates linear electron transport rate in Arabidopsis thaliana. Mol. Plant. 2016;9:271–288. doi: 10.1016/j.molp.2015.12.001. PubMed DOI

Wang F., Yan J., Ahammed G.J., Wang X., Bu X., Xiang H., Li Y., Lu J., Liu Y., Qi H., et al. PGR5/PGRL1 and NDH mediate far-red light-induced photoprotection in response to chilling stress in tomato. Front. Plant Sci. 2020;11:669. doi: 10.3389/fpls.2020.00669. PubMed DOI PMC

Johnson X., Wostrikoff K., Finazzi G., Kuras R., Schwarz C., Bujaldon S., Nickelsen J., Stern D.B., Wollman F., Vallon O. MRL1, a conserved pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in Chlamydomas and Arabidopsis. Plant Cell. 2010;22:234–248. doi: 10.1105/tpc.109.066266. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...