Role of LOC_Os01g68450, Containing DUF2358, in Salt Tolerance Is Mediated via Adaptation of Absorbed Light Energy Dissipation

. 2022 May 02 ; 11 (9) : . [epub] 20220502

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35567234

Grantová podpora
90th Anniversary of Rachadapisek Sompote Fund Chulalongkorn University
NSF B16F640103 The Office of National Higher Education Science Research and Innovation Policy Council, Thailand

Salt stress affects plant growth and productivity. In this study we determined the roles of eight genes involved in photosynthesis, using gene co-expression network analysis, under salt-stress conditions using Arabidopsis knockout mutants. The green area of the leaves was minimum in the at1g65230 mutant line. Rice LOC_Os01g68450, a homolog of at1g65230, was ectopically expressed in the at1g65230 mutant line to generate revertant lines. Under salt stress, the revertant lines exhibited significantly higher net photosynthesis rates than the at1g65230 mutant line. Moreover, the operating efficiency of photosystem II (PSII) and electron transport rate of the revertant lines were higher than those of the wild type and at1g65230 mutant line after 10 days of exposure to salt stress. After this period, the protein PsbD-the component of PSII-decreased in all lines tested without significant difference among them. However, the chlorophyll a and b, carotenoid, and anthocyanin contents of revertant lines were higher than those of the mutant line. Furthermore, lower maximum chlorophyll fluorescence was detected in the revertant lines. This suggests that LOC_Os01g68450 expression contributed to the salt tolerance phenotype by modifying the energy dissipation process and led to the ability to maintain photosynthesis under salt stress conditions.

Zobrazit více v PubMed

Hossain M.S. Present Scenario of Global Salt Affected Soil, its Management and Importance of Salinity Research. Int. Res. J. Biol. Sci. 2019;1:1–3.

Li W., Li Q. Effect of Environment Salt Stress on Plant and the Molecular Mechanism of Salt Stress Tolerance. Int. J. Environ. Sci. Nat. Resour. 2017;7:81–86.

Isayenkov S.V., Maathuis F.J.M. Plant Salinity Stress: Many Unanswered Questions Remain. Front. Plant Sci. 2019;10:80. doi: 10.3389/fpls.2019.00080. PubMed DOI PMC

Kanjoo V., Jearakongman S., Punyawaew K., Siangliw J.L., Siangliw M., Vanavichit A., Toojinda T. Co-Location of Quantitative Trait Loci for Drought and Salinity Tolerance in Rice. Thai J. Genet. 2011;4:126–138.

Punchkhon C., Plaimas K., Buaboocha T., Siangliw J.L., Toojinda T., Comai L., De Diego N., Spíchal L., Chadchawan S. Drought-tolerance gene identification using genome comparison and co-expression network analysis of chromosome substitution lines in rice. Genes. 2020;11:1197. doi: 10.3390/genes11101197. PubMed DOI PMC

Chutimanukul P., Kositsup B., Plaimas K., Buaboocha T., Siangliw M., Toojinda T., Comai L., Chadchawan S. Photosynthetic Responses and Identification of Salt Tolerance Genes in a Chromosome Segment Substitution Line of ‘Khao Dawk Mali 105′ Rice. Environ. Exp. Bot. 2018;155:497–508. doi: 10.1016/j.envexpbot.2018.07.019. PubMed DOI PMC

Chutimanukul P. Doctoral Dissertation. Chulalongkorn University; Bangkok, Thailand: Jun 30, 2018. Salt Tolerant Gene Identification in Rice Using Chromosome Substitution Lines with ‘Khao Dawk Mali 105′ Rice Genetic Background.

Tóth S.Z., Oukarroum A., Schansker G. Probing the Photosynthetic Apparatus Noninvasively in the Laboratory of Reto Stresser in the Countryside of Geneva between 2001 and 2009. Photosynthetica. 2020;58:560–572. doi: 10.32615/ps.2020.003. DOI

Ouyang S., Zhu W., Hamilton J., Lin H., Campbell M., Childs K., Thibaud-Nissen F., Malek R.L., Lee Y., Zheng L., et al. The TIGR Rice Genome Annotation Resource: Improvements and New Features. Nucleic Acids Res. 2007;35:D883–D887. doi: 10.1093/nar/gkl976. PubMed DOI PMC

Berardini T.Z., Reiser L., Li D., Mezheritsky Y., Muller R., Strait E., Huala E. The Arabidopsis Information Resource: Making and Mining the ‘Gold Standard’ Annotated Reference Plant Genome. Genesis. 2015;53:474–485. doi: 10.1002/dvg.22877. PubMed DOI PMC

Moradi F., Ismail A.M. Responses of Photosynthesis, Chlorophyll Fluorescence and ROS-Scavenging Systems to Salt Stress during Seedling and Reproductive Stages in Rice. Ann. Bot. 2007;99:1161–1173. doi: 10.1093/aob/mcm052. PubMed DOI PMC

Soussi M., Ocana A., Lluch C. Effects of Salt Stress on Growth, Photosynthesis and Nitrogen Fixation in Chick-Pea (Cicer arietinum L.) J. Exp. Bot. 1998;49:1329–1337. doi: 10.1093/jxb/49.325.1329. DOI

Helena H., František H., Jaroslava M., Kamil K. Effects of Salt Stress on Water Status, Photosynthesis and Chlorophyll Fluorescence of Rocket. Plant Soil Environ. 2017;63:362–367. doi: 10.17221/398/2017-PSE. DOI

Jiang C., Zu C., Lu D., Zheng Q., Shen J., Wang H., Li D. Effect of Exogenous Selenium Supply on Photosynthesis, Na+ Accumulation and Antioxidative Capacity of Maize (Zea mays L.) under Salinity Stress. Sci. Rep. 2017;7:42039. doi: 10.1038/srep42039. PubMed DOI PMC

Chaves M.M., Flexas J., Pinheiro C. Photosynthesis under Drought and Salt Stress: Regulation Mechanisms from Whole Plant to Cell. Ann. Bot. 2009;103:551–560. doi: 10.1093/aob/mcn125. PubMed DOI PMC

Taj Z., Challabathula D. Protection of Photosynthesis by Halotolerant Staphylococcus sciuri ET101 in Tomato (Lycoperiscon esculentum) and Rice (Oryza sativa) Plants during Salinity Stress: Possible Interplay between Carboxylation and Oxygenation in Stress Mitigation. Front. Microbiol. 2021;11:1–24. doi: 10.3389/fmicb.2020.547750. PubMed DOI PMC

Vernotte C., Etienne A.L., Briantais J.M. Quenching of the System II Chlorophyll Fluorescence by the Plastoquinone Pool. Biochim. Biophys. Acta. 1979;545:519–527. PubMed

Velthuys B.R. Electron-Dependent Competition Between Plastoquinone and Inhibitors for Binding to Photosystem II. FEBS Lett. 1981;126:277–281. doi: 10.1016/0014-5793(81)80260-8. DOI

Latowski D., Kuczyńska P., Strzałka K. Xanthophyll Cycle—A Mechanism Protesting Plants Against Oxidative Stress. Redox Rep. 2011;16:78–90. doi: 10.1179/174329211X13020951739938. PubMed DOI PMC

Cebrián G., Iglesias-Moya J., García A., Martínez J., Romero J., Regalado J.J., Martínez C., Valenzuela J.L., Jamilena M. Involvement of Ethylene Receptors in the Salt Tolerance Response of Cucurbita pepo. Hortic. Res. 2021;8:73. doi: 10.1038/s41438-021-00508-z. PubMed DOI PMC

Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules. 2019;24:2452. doi: 10.3390/molecules24132452. PubMed DOI PMC

Xu Z., Mahmood K., Rothstein S.J. ROS Induces Anthocyanin Production via Late Biosynthetic Genes and Anthocyanin Deficiency Confers the Hypersensitivity to ROS-Generating Stresses in Arabidopsis. Plant Cell Physiol. 2017;58:1364–1377. doi: 10.1093/pcp/pcx073. PubMed DOI

Shen Y., Li J., Gu R., Yue L., Wang H., Zhan X., Xing B. Carotenoid and Superoxide Dismutase Are the Most Effective Antioxidants Participating in ROS Scavenging in Phenanthrene Accumulated Wheat Leaf. Chemosphere. 2018;197:513–525. doi: 10.1016/j.chemosphere.2018.01.036. PubMed DOI

Li N., Wang X., Ma B., Wu Z., Zheng L., Qi Z., Wang Y. A Leucoanthocyanidin Dioxygenase Gene (RtLDOX2) from the Feral Forage Plant Reaumuria trigyna Promotes the Accumulation of Flavonoids and Improves Tolerance to Abiotic Stresses. J. Plant Res. 2021;134:1121–1138. doi: 10.1007/s10265-021-01315-2. PubMed DOI

Lamesch P., Berardini T.Z., Li D., Swarbreck D., Wilks C., Sasidharan R., Muller R., Dreher K., Alexander D.L., Garcia-Hernandez M., et al. The Arabidopsis Information Resource (TAIR): Improved Gene Annotation and New Tools. Nucleic Acids Res. 2012;40:D1202–D1210. doi: 10.1093/nar/gkr1090. PubMed DOI PMC

De Diego N., Fürst T., Humplík J.F., Ugena L., Podlešáková K., Spíchal L. An Automated Method for High-Throughput Screening of Arabidopsis Rosette Growth in Multi-Well Plates and Its Validation in Stress Condition. Front. Plant Sci. 2017;8:1702. doi: 10.3389/fpls.2017.01702. PubMed DOI PMC

Hu X., Tanaka A., Tanaka R. Simple Extraction Methods That Prevent the Artifactual Conversion of Chlorophyll to Chlorophyllide during Pigment Isolation from Leaf Samples. Plant Methods. 2013;9:19. doi: 10.1186/1746-4811-9-19. PubMed DOI PMC

Wellburn A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI

Neff M.M., Chory J. Genetic Interactions between Phytochrome A, Phytochrome B, and Cryptochrome 1 during Arabidopsis Development. Plant Physiol. 1998;118:27–35. doi: 10.1104/pp.118.1.27. PubMed DOI PMC

Liu H., Frankel L.K., Bricker T. Functional Analysis of Photosystem II in a PsbO-1-Deficient Mutant in Arabidopsis thaliana. Biochemistry. 2007;46:7607–7613. doi: 10.1021/bi700107w. PubMed DOI

Bevitori R., Oliveira M., Grossi-de-Sá M., Lanna A., Silveira R. Selection of Optimized Candidate Reference Genes for qRT-PCR Normalization in Rice (Oryza sativa L.) During Magnaporthe oryzae Infection and Drought. GMR. 2014;13:9795–9805. doi: 10.4238/2014.November.27.7. PubMed DOI

Pfaffl M.W. A New Mathematical Model for Relative Quantification in Real-Time RT–PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Järvi S., Suorsa M., Paakkarinen V., Aro E.M. Optimized Native Gel Systems for Separation of Thylakoid Protein Complexes: Novel Super- and Mega-Complexes. Biochem. J. 2011;439:207–214. doi: 10.1042/BJ20102155. PubMed DOI

Otto J.J. Chapter 6 Immunoblotting. In: Asai D.J., editor. Methods in Cell Biology. Volume 37. Academic Press; Cambridge, MA, USA: 1993. pp. 105–117. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...