DNA-linked inhibitor antibody assay (DIANA) as a new method for screening influenza neuraminidase inhibitors
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30404922
PubMed Central
PMC6292454
DOI
10.1042/bcj20180764
PII: BCJ20180764
Knihovny.cz E-zdroje
- Klíčová slova
- DIANA, assay, crystallography, influenza neuraminidase,
- MeSH
- antivirové látky chemie farmakologie MeSH
- chřipka lidská farmakoterapie enzymologie virologie MeSH
- DNA chemie MeSH
- inhibitory enzymů chemie farmakologie MeSH
- kyseliny fosforité chemie MeSH
- lidé MeSH
- neuraminidasa antagonisté a inhibitory metabolismus MeSH
- oseltamivir analogy a deriváty chemie MeSH
- preklinické hodnocení léčiv metody MeSH
- reprodukovatelnost výsledků MeSH
- virové proteiny antagonisté a inhibitory metabolismus MeSH
- virus chřipky A účinky léků enzymologie fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antivirové látky MeSH
- DNA MeSH
- inhibitory enzymů MeSH
- kyseliny fosforité MeSH
- neuraminidasa MeSH
- oseltamivir MeSH
- tamiphosphor MeSH Prohlížeč
- virové proteiny MeSH
Influenza neuraminidase is responsible for the escape of new viral particles from the infected cell surface. Several neuraminidase inhibitors are used clinically to treat patients or stockpiled for emergencies. However, the increasing development of viral resistance against approved inhibitors has underscored the need for the development of new antivirals effective against resistant influenza strains. A facile, sensitive, and inexpensive screening method would help achieve this goal. Recently, we described a multiwell plate-based DNA-linked inhibitor antibody assay (DIANA). This highly sensitive method can quantify femtomolar concentrations of enzymes. DIANA also has been applied to high-throughput enzyme inhibitor screening, allowing the evaluation of inhibition constants from a single inhibitor concentration. Here, we report the design, synthesis, and structural characterization of a tamiphosphor derivative linked to a reporter DNA oligonucleotide for the development of a DIANA-type assay to screen potential influenza neuraminidase inhibitors. The neuraminidase is first captured by an immobilized antibody, and the test compound competes for binding to the enzyme with the oligo-linked detection probe, which is then quantified by qPCR. We validated this novel assay by comparing it with the standard fluorometric assay and demonstrated its usefulness for sensitive neuraminidase detection as well as high-throughput screening of potential new neuraminidase inhibitors.
Zobrazit více v PubMed
Iuliano A.D., Roguski K.M., Chang H.H., Muscatello D.J., Palekar R., Tempia S. et al. (2018) Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391, 1285–1300 10.1016/S0140-6736(17)33293-2 PubMed DOI PMC
Potier M., Mameli L., Bélisle M., Dallaire L. and Melançon S.B. (1979) Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-α-d-N-acetylneuraminate) substrate. Anal. Biochem. 94, 287–296 10.1016/0003-2697(79)90362-2 PubMed DOI
Li A.F., Wang W.H., Xu W.F. and Gong J.Z. (2009) A microplate-based screening assay for neuraminidase inhibitors. Drug Discov. Ther. 3, 260–265 PMID: PubMed
Marjuki H., Mishin V.P., Sleeman K., Okomo-Adhiambo M., Sheu T.G., Guo L. et al. (2013) Bioluminescence-based neuraminidase inhibition assay for monitoring influenza virus drug susceptibility in clinical specimens. Antimicrob. Agents Chemother. 57, 5209–5215 10.1128/AAC.01086-13 PubMed DOI PMC
Okomo-Adhiambo M., Sheu T.G. and Gubareva L.V. (2013) Assays for monitoring susceptibility of influenza viruses to neuraminidase inhibitors. Influenza Other Respir. Viruses 7 (Suppl 1), 44–49 10.1111/irv.12051 PubMed DOI PMC
Navrátil V., Schimer J., Tykvart J., Knedlík T., Vik V., Majer P. et al. (2017) DNA-linked inhibitor antibody assay (DIANA) for sensitive and selective enzyme detection and inhibitor screening. Nucleic Acids Res. 45, e10 10.1093/nar/gkw853 PubMed DOI PMC
Bařinka C., Rinnová M., Šácha P., Rojas C., Majer P., Slusher B.S. et al. (2002) Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. J. Neurochem. 80, 477–487 10.1046/j.0022-3042.2001.00715.x PubMed DOI
Schmidt T.G. and Skerra A. (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat. Protoc. 2, 1528–1535 10.1038/nprot.2007.209 PubMed DOI
Schmidt T.G.M., Batz L., Bonet L., Carl U., Holzapfel G., Kiem K. et al. (2013) Development of the Twin-Strep-tag (R) and its application for purification of recombinant proteins from cell culture supernatants. Protein Expr. Purif. 92, 54–61 10.1016/j.pep.2013.08.021 PubMed DOI
Albiñana C.B., Machara A., Řezáčová P., Pachl P., Konvalinka J. and Kožíšek M. (2016) Kinetic, thermodynamic and structural analysis of tamiphosphor binding to neuraminidase of H1N1 (2009) pandemic influenza. Eur. J. Med. Chem. 121, 100–109 10.1016/j.ejmech.2016.05.016 PubMed DOI
Boutevin B., Hervaud Y., Jeanmaire T., Boulahna A. and Elasri M. (2001) Monodealkylation des esters phosphoniques synthese de monosels et de monoacides phosphoniques. Phosphorus Sulfur Silicon Relat. Elem. 174, 1–14 10.1080/10426500108040229 DOI
Baskin J.M., Prescher J.A., Laughlin S.T., Agard N.J., Chang P.V., Miller I.A. et al. (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl Acad. Sci. U.S.A. 104, 16793–16797 10.1073/pnas.0707090104 PubMed DOI PMC
Williams J.W. and Morrison J.F. (1979) The kinetics of reversible tight-binding inhibition. Methods Enzymol. 63, 437–467 10.1016/0076-6879(79)63019-7 PubMed DOI
Dixon M. (1953) The determination of enzyme inhibitor constants. Biochem. J. 55, 170–171 10.1042/bj0550170 PubMed DOI PMC
Mueller U., Förster R., Hellmig M., Huschmann F.U., Kastner A., Malecki P. et al. (2015) The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: current status and perspectives. Eur. Phys. J. Plus 130, 141 10.1140/epjp/i2015-15141-2 DOI
Krug M., Weiss M.S., Heinemann U. and Mueller U. (2012) XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS. J. Appl. Crystallogr. 45, 568–572 10.1107/S0021889812011715 DOI
Vagin A. and Teplyakov A. (2000) An approach to multi-copy search in molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 56 (Pt 12), 1622–1624 10.1107/S0907444900013780 PubMed DOI
Murshudov G.N., Vagin A.A. and Dodson E.J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53 (Pt 3), 240–255 10.1107/S0907444996012255 PubMed DOI
Collaborative Computational Project, Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50 (Pt 5), 760–763 10.1107/S0907444994003112 PubMed DOI
Emsley P. and Cowtan K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60 (Pt 12 Pt 1), 2126–2132 10.1107/S0907444904019158 PubMed DOI
Lovell S.C., Davis I.W., Arendall W.B., de Bakker P.I., Word J.M., Prisant M.G. et al. (2003) Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 50, 437–450 10.1002/prot.10286 PubMed DOI
Krissinel E. and Henrick K. (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 10.1107/S0907444904026460 PubMed DOI
Vavricka C.J., Li Q., Wu Y., Qi J., Wang M., Liu Y. et al. (2011) Structural and functional analysis of laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA inhibition. PLoS Pathog. 7, e1002249 10.1371/journal.ppat.1002249 PubMed DOI PMC
Chen C.L., Lin T.C., Wang S.Y., Shie J.J., Tsai K.C., Cheng Y.S.E. et al. (2014) Tamiphosphor monoesters as effective anti-influenza agents. Eur. J. Med. Chem. 81, 106–118 10.1016/j.ejmech.2014.04.082 PubMed DOI
Lew W., Chen X.W. and Kim C.U. (2000) Discovery and development of GS 4104 (oseltamivir): an orally active influenza neuraminidase inhibitor. Curr. Med. Chem. 7, 663–672 10.2174/0929867003374886 PubMed DOI
Shie J.J., Fang J.M., Wang S.Y., Tsai K.C., Cheng Y.S.E., Yang A.S. et al. (2007) Synthesis of Tamiflu and its phosphonate congeners possessing potent anti-influenza activity. J. Am. Chem. Soc. 129, 11892–11893 10.1021/ja073992i PubMed DOI
Carbain B., Martin S.R., Collins P.J., Hitchcock P.B. and Streicher H. (2009) Galactose-conjugates of the oseltamivir pharmacophore-new tools for the characterization of influenza virus neuraminidases. Org. Biomol. Chem. 7, 2570–2575 10.1039/b903394g PubMed DOI
Carbain B., Collins P.J., Callum L., Martin S.R., Hay A.J., McCauley J. et al. (2009) Efficient synthesis of highly active phospha-isosteres of the influenza neuraminidase inhibitor oseltamivir. ChemMedChem 4, 335–337 10.1002/cmdc.200800379 PubMed DOI
Stanley M., Martin S.R., Birge M., Carbain B. and Streicher H. (2011) Biotin-, fluorescein- and ‘clickable’ conjugates of phospha-oseltamivir as probes for the influenza virus which utilize selective binding to the neuraminidase. Org. Biomol. Chem. 9, 5625–5629 10.1039/c1ob05384a PubMed DOI
Streicher H., Martin S.R., Coombs P.J., McCauley J., Neill-Hall D. and Stanley M. (2014) A phospha-oseltamivir-biotin conjugate as a strong and selective adhesive for the influenza virus. Bioorg. Med. Chem. Lett. 24, 1805–1807 10.1016/j.bmcl.2014.02.021 PubMed DOI PMC
Chong A.K., Pegg M.S. and von Itzstein M. (1991) Influenza virus sialidase: effect of calcium on steady-state kinetic parameters. Biochim. Biophys. Acta 1077, 65–71 10.1016/0167-4838(91)90526-6 PubMed DOI
Burmeister W.P., Cusack S. and Ruigrok R.W. (1994) Calcium is needed for the thermostability of influenza B virus neuraminidase. J. Gen. Virol. 75 (Pt 2), 381–388 10.1099/0022-1317-75-2-381 PubMed DOI
Zhang J.H., Chung T.D.Y. and Oldenburg K.R. (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen 4, 67–73 10.1177/108705719900400206 PubMed DOI
Hilfinger J. and Shen W. (2011) Neuraminidase inhibitors. Google Patents, International Publication Number WO 2011/123856 Al https://patentimages.storage.googleapis.com/a7/f6/bd/96edbe41cf1edc/WO2011123856A1.pdf
Mooney C.A., Johnson S.A., ‘t Hart P., van Ufford L.Q., de Haan C.A.M., Moret E.E. et al. (2014) Oseltamivir analogues bearing N-substituted guanidines as potent neuraminidase inhibitors. J. Med. Chem. 57, 3154–3160 10.1021/jm401977j PubMed DOI
Xu R., Zhu X., McBride R., Nycholat C.M., Yu W., Paulson J.C. et al. (2012) Functional balance of the hemagglutinin and neuraminidase activities accompanies the emergence of the 2009 H1N1 influenza pandemic. J. Virol. 86, 9221–9232 10.1128/JVI.00697-12 PubMed DOI PMC
Wu Y., Qin G., Gao F., Liu Y., Vavricka C.J., Qi J. et al. (2013) Induced opening of influenza virus neuraminidase N2 150-loop suggests an important role in inhibitor binding. Sci. Rep. 3, 1551 10.1038/srep01551 PubMed DOI PMC
Brünger A.T. (1992) Free R-value: a novel statistical quantity for assessing the accuracy of crystal-structures. Nature 355, 472–475 10.1038/355472a0 PubMed DOI
Chen V.B., Arendall W.B., Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J. et al. (2010) Molprobity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 10.1107/S0907444909042073 PubMed DOI PMC