DNA-linked Inhibitor Antibody Assay (DIANA) for sensitive and selective enzyme detection and inhibitor screening
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27679479
PubMed Central
PMC5314793
DOI
10.1093/nar/gkw853
PII: gkw853
Knihovny.cz E-zdroje
- MeSH
- biotest * MeSH
- DNA * MeSH
- enzymy metabolismus MeSH
- inhibitory enzymů farmakologie MeSH
- lidé MeSH
- objevování léků * MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA * MeSH
- enzymy MeSH
- inhibitory enzymů MeSH
Human diseases are often diagnosed by determining levels of relevant enzymes and treated by enzyme inhibitors. We describe an assay suitable for both ultrasensitive enzyme quantification and quantitative inhibitor screening with unpurified enzymes. In the DNA-linked Inhibitor ANtibody Assay (DIANA), the target enzyme is captured by an immobilized antibody, probed with a small-molecule inhibitor attached to a reporter DNA and detected by quantitative PCR. We validate the approach using the putative cancer markers prostate-specific membrane antigen and carbonic anhydrase IX. We show that DIANA has a linear range of up to six logs and it selectively detects zeptomoles of targets in complex biological samples. DIANA's wide dynamic range permits determination of target enzyme inhibition constants using a single inhibitor concentration. DIANA also enables quantitative screening of small-molecule enzyme inhibitors using microliters of human blood serum containing picograms of target enzyme. DIANA's performance characteristics make it a superior tool for disease detection and drug discovery.
Department of Biochemistry Faculty of Science Charles University Prague Prague 128 43 Czech Republic
Department of Urology Thomayer Hospital Prague Prague 140 59 Czech Republic
Zobrazit více v PubMed
Engvall E., Perlmann P. Enzyme-linked immunosorbent assay (Elisa) quantitative assay of immunoglobulin-G. Immunochemistry. 1971;8:871–874. PubMed
Lequin R.M. Enzyme immunoassay (EIA)/Enzyme-linked immunosorbent assay (ELISA) Clin. Chem. 2005;51:2415–2418. PubMed
Hendrickson E.R., Truby T.M., Joerger R.D., Majarian W.R., Ebersole R.C. High sensitivity multianalyte immunoassay using covalent DNA-labeled antibodies and polymerase chain reaction. Nucleic Acids Res. 1995;23:522–529. PubMed PMC
Thaxton C.S., Elghanian R., Thomas A.D., Stoeva S.I., Lee J.S., Smith N.D., Schaeffer A.J., Klocker H., Horninger W., Bartsch G., et al. Nanoparticle-based bio-barcode assay redefines ‘undetectable' PSA and biochemical recurrence after radical prostatectomy. Proc. Natl. Acad. Sci. U.S.A. 2009;106:18437–18442. PubMed PMC
Fredriksson S., Dixon W., Ji H., Koong A.C., Mindrinos M., Davis R.W. Multiplexed protein detection by proximity ligation for cancer biomarker validation. Nat. Methods. 2007;4:327–329. PubMed
Lundberg M., Eriksson A., Tran B., Assarsson E., Fredriksson S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 2011;39:e102. PubMed PMC
Robertson J.G. Mechanistic basis of enzyme-targeted drugs. Biochemistry. 2005;44:5561–5571. PubMed
Hughes J.P., Rees S., Kalindjian S.B., Philpott K.L. Principles of early drug discovery. Brit. J. Pharmacol. 2011;162:1239–1249. PubMed PMC
Inglese J., Johnson R.L., Simeonov A., Xia M.H., Zheng W., Austin C.P., Auld D.S. High-throughput screening assays for the identification of chemical probes. Nat. Chem. Biol. 2007;3:466–479. PubMed
Mesters J.R., Barinka C., Li W.X., Tsukamoto T., Majer P., Slusher B.S., Konvalinka J., Hilgenfeld R. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J. 2006;25:1375–1384. PubMed PMC
Alterio V., Hilvo M., Di Fiore A., Supuran C.T., Pan P.W., Parkkila S., Scaloni A., Pastorek J., Pastorekova S., Pedone C., et al. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc. Natl. Acad. Sci. U.S.A. 2009;106:16233–16238. PubMed PMC
Kinoshita Y., Kuratsukuri K., Landas S., Imaida K., Rovito P.M., Wang C.Y., Haas G.P. Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J. Surg. 2006;30:628–636. PubMed
Wykoff C.C., Beasley N.J.P., Watson P.H., Turner K.J., Pastorek J., Sibtain A., Wilson G.D., Turley H., Talks K.L., Maxwell P.H., et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res. 2000;60:7075–7083. PubMed
Zhou G.X., Ireland J., Rayman P., Finke J., Zhou M. Quantification of carbonic anhydrase IX expression in serum and tissue of renal cell carcinoma patients using enzyme-linked immunosorbent assay: prognostic and diagnostic potentials. Urology. 2010;75:257–261. PubMed
Heck M.M., Retz M., D'Alessandria C., Rauscher I., Scheidhauer K., Maurer T., Storz E., Janssen F., Schottelius M., Wester H.J., et al. Systemic Radioligand Therapy with (177)Lu Labeled Prostate Specific Membrane Antigen Ligand for Imaging and Therapy in Patients with Metastatic Castration Resistant Prostate Cancer. J. Urol. 2016;196:382–391. PubMed
Krall N., Pretto F., Neri D. A bivalent small molecule-drug conjugate directed against carbonic anhydrase IX can elicit complete tumour regression in mice. Chem. Sci. 2014;5:3640–3644.
Xiao Z., Adam B.L., Cazares L.H., Clements M.A., Davis J.W., Schellhammer P.F., Dalmasso E.A., Wright G.L. Quantitation of serum prostate-specific membrane antigen by a novel protein biochip immunoassay discriminates benign from malignant prostate disease. Cancer Res. 2001;61:6029–6033. PubMed
Zavada J., Zavadova Z., Zat'ovicova M., Hyrsl L., Kawaciuk I. Soluble form of carbonic anhydrase IX (CA IX) in the serum and urine of renal carcinoma patients. Brit. J. Cancer. 2003;89:1067–1071. PubMed PMC
Sim S.H., Messenger M.P., Gregory W.M., Wind T.C., Vasudev N.S., Cartledge J., Thompson D., Selby P.J., Banks R.E. Prognostic utility of pre-operative circulating osteopontin, carbonic anhydrase IX and CRP in renal cell carcinoma. Brit. J. Cancer. 2012;107:1131–1137. PubMed PMC
Slusher B.S., Vornov J.J., Thomas A.G., Hurn P.D., Harukuni I., Bhardwaj A., Traystman R.J., Robinson M.B., Britton P., Lu X.C.M., et al. Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury. Nat. Med. 1999;5:1396–1402. PubMed
Bacich D.J., Wozniak K.M., Lu X.C.M., O'Keefe D.S., Callizot N., Heston W.D.W., Slusher B.S. Mice lacking glutamate carboxypeptidase II are protected from peripheral neuropathy and ischemic brain injury. J. Neurochem. 2005;95:314–323. PubMed
Olszewski R.T., Bzdega T., Neale J.H. mGluR3 and not mGluR2 receptors mediate the efficacy of NAAG peptidase inhibitor in validated model of schizophrenia. Schizophr. Res. 2012;136:160–161. PubMed
Chiche J., Ilc K., Laferriere J., Trottier E., Dayan F., Mazure N.M., Brahimi-Horn M.C., Pouyssegur J. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 2009;69:358–368. PubMed
Pacchiano F., Carta F., McDonald P.C., Lou Y.M., Vullo D., Scozzafava A., Dedhar S., Supuran C.T. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J. Med. Chem. 2011;54:1896–1902. PubMed
Lou Y.M., McDonald P.C., Oloumi A., Chia S., Ostlund C., Ahmadi A., Kyle A., Keller U.A.D., Leung S., Huntsman D., et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 2011;71:3364–3376. PubMed
Jackson P.F., Cole D.C., Slusher B.S., Stetz S.L., Ross L.E., Donzanti B.A., Trainor D.A. Design, synthesis, and biological activity of a potent inhibitor of the neuropeptidase N-acetylated alpha-linked acidic dipeptidase. J. Med. Chem. 1996;39:619–622. PubMed
Kozikowski A.P., Nan F., Conti P., Zhang J.H., Ramadan E., Bzdega T., Wroblewska B., Neale J.H., Pshenichkin S., Wroblewski J.T. Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II (NAALADase) J. Med. Chem. 2001;44:298–301. PubMed
van der Post J.P., de Visser S.J., de Kam M.L., Woelfler M., Hilt D.C., Vornov J., Burak E.S., Bortey E., Slusher B.S., Limsakun T., et al. The central nervous system effects, pharmacokinetics and safety of the NAALADase-inhibitor GPI 5693. Brit. J. Clin. Pharmacol. 2005;60:128–136. PubMed PMC
Rais R., Wozniak K., Wu Y., Niwa M., Stathis M., Alt J., Giroux M., Sawa A., Rojas C., Slusher B.S. Selective CNS uptake of the GCP-II inhibitor 2-PMPA following intranasal administration. PLoS One. 2015;10:e0131861. PubMed PMC
Supuran C.T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 2008;7:168–181. PubMed
Barinka C., Rinnova M., Sacha P., Rojas C., Majer P., Slusher B.S., Konvalinka J. Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. J. Neurochem. 2002;80:477–487. PubMed
Tykvart J., Navratil V., Sedlak F., Corey E., Colombatti M., Fracasso G., Koukolik F., Barinka C., Sacha P., Konvalinka J. Comparative analysis of monoclonal antibodies against prostate-specific membrane antigen (PSMA) Prostate. 2014;74:1674–1690. PubMed
Knedlik T., Navratil V., Vik V., Pacik D., Sacha P., Konvalinka J. Detection and quantitation of glutamate carboxypeptidase II in human blood. Prostate. 2014;74:768–780. PubMed
Zavada J., Zavadova Z., Pastorek J., Biesova Z., Jezek J., Velek J. Human tumour-associated cell adhesion protein MN/CA IX: identification of M75 epitope and of the region mediating cell adhesion. Brit. J. Cancer. 2000;82:1808–1813. PubMed PMC
Chrastina A., Zavada J., Parkkila S., Kaluz T., Kaluzova M., Rajcani J., Pastorek J., Pastorekova S. Biodistribution and pharmacokinetics of I-125-labeled monoclonal antibody M75 specific for carbonic anhydrase IX, an intrinsic marker of hypoxia, in nude mice xenografted with human colorectal carcinoma. Int. J. Cancer. 2003;105:873–881. PubMed
Vullo D., Scozzafava A., Pastorekova S., Pastorek J., Supuran C.T. Carbonic anhydrase inhibitors: inhibition of the tumor-associated isozyme IX with fluorine-containing sulfonamides. The first subnanomolar CA IX inhibitor discovered. Bioorg. Med. Chem. Lett. 2004;14:2351–2356. PubMed
Tykvart J., Schimer J., Barinkova J., Pachl P., Postova-Slavetinska L., Majer P., Konvalinka J., Sacha P. Rational design of urea-based glutamate carboxypeptidase II (GCPII) inhibitors as versatile tools for specific drug targeting and delivery. Bioorg. Med. Chem. 2014;22:4099–4108. PubMed
Brynda J., Mader P., Sicha V., Fabry M., Poncova K., Bakardiev M., Gruner B., Cigler P., Rezacova P. Carborane-based carbonic anhydrase inhibitors. Angew. Chem. Int. Edit. 2013;52:13760–13763. PubMed
Sacha P., Knedlik T., Schimer J., Tykvart J., Parolek J., Navratil V., Dvorakova P., Sedlak F., Ulbrich K., Strohalm J., et al. iBodies: modular synthetic antibody mimetics based on hydrophilic polymers decorated with functional moieties. Angew. Chem. Int. Ed. Engl. 2016;55:2356–2360. PubMed PMC
Liu H., Moy P., Kim S., Xia Y., Rajasekaran A., Navarro V., Knudsen B., Bander N.H. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res. 1997;57:3629–3634. PubMed
Hammer O., Harper D.A.T. Paleontological Data Analysis. Malden: Blackwell Publishing; 2006.
Bengtsson M., Stahlberg A., Rorsman P., Kubista M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res. 2005;15:1388–1392. PubMed PMC
Maresca K.P., Hillier S.M., Femia F.J., Keith D., Barone C., Joyal J.L., Zimmerman C.N., Kozikowski A.P., Barrett J.A., Eckelman W.C., et al. A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. J. Med. Chem. 2009;52:347–357. PubMed
Hlouchova K., Barinka C., Konvalinka J., Lubkowski J. Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III. FEBS J. 2009;276:4448–4462. PubMed
Brenner S., Lerner R.A. Encoded combinatorial chemistry. Proc. Natl. Acad. Sci. U.S.A. 1992;89:5381–5383. PubMed PMC
Henry N., Sebe P., Cussenot O. Inappropriate treatment of prostate cancer caused by heterophilic antibody interference. Nat. Clin. Pract. Urol. 2009;6:164–167. PubMed
Poyet C., Hof D., Sulser T., Muntener M. Artificial prostate-specific antigen persistence after radical prostatectomy. J. Clin. Oncol. 2012;30:E62–E63. PubMed
Ali M.M., Li F., Zhang Z.Q., Zhang K.X., Kang D.K., Ankrum J.A., Le X.C., Zhao W.A. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 2014;43:3324–3341. PubMed
Rich D.H., Bernatowicz M.S., Agarwal N.S., Kawai M., Salituro F.G., Schmidt P.G. Inhibition of aspartic proteases by pepstatin and 3-Methylstatine derivatives of pepstatin - evidence for collected-substrate enzyme-inhibition. Biochemistry. 1985;24:3165–3173. PubMed
Karaman M.W., Herrgard S., Treiber D.K., Gallant P., Atteridge C.E., Campbell B.T., Chan K.W., Ciceri P., Davis M.I., Edeen P.T., et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 2008;26:127–132. PubMed
Building the SynBio community in the Czech Republic from the bottom up: You get what you give