DNA-linked Inhibitor Antibody Assay (DIANA) for sensitive and selective enzyme detection and inhibitor screening

. 2017 Jan 25 ; 45 (2) : e10. [epub] 20160926

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27679479

Human diseases are often diagnosed by determining levels of relevant enzymes and treated by enzyme inhibitors. We describe an assay suitable for both ultrasensitive enzyme quantification and quantitative inhibitor screening with unpurified enzymes. In the DNA-linked Inhibitor ANtibody Assay (DIANA), the target enzyme is captured by an immobilized antibody, probed with a small-molecule inhibitor attached to a reporter DNA and detected by quantitative PCR. We validate the approach using the putative cancer markers prostate-specific membrane antigen and carbonic anhydrase IX. We show that DIANA has a linear range of up to six logs and it selectively detects zeptomoles of targets in complex biological samples. DIANA's wide dynamic range permits determination of target enzyme inhibition constants using a single inhibitor concentration. DIANA also enables quantitative screening of small-molecule enzyme inhibitors using microliters of human blood serum containing picograms of target enzyme. DIANA's performance characteristics make it a superior tool for disease detection and drug discovery.

Zobrazit více v PubMed

Engvall E., Perlmann P. Enzyme-linked immunosorbent assay (Elisa) quantitative assay of immunoglobulin-G. Immunochemistry. 1971;8:871–874. PubMed

Lequin R.M. Enzyme immunoassay (EIA)/Enzyme-linked immunosorbent assay (ELISA) Clin. Chem. 2005;51:2415–2418. PubMed

Hendrickson E.R., Truby T.M., Joerger R.D., Majarian W.R., Ebersole R.C. High sensitivity multianalyte immunoassay using covalent DNA-labeled antibodies and polymerase chain reaction. Nucleic Acids Res. 1995;23:522–529. PubMed PMC

Thaxton C.S., Elghanian R., Thomas A.D., Stoeva S.I., Lee J.S., Smith N.D., Schaeffer A.J., Klocker H., Horninger W., Bartsch G., et al. Nanoparticle-based bio-barcode assay redefines ‘undetectable' PSA and biochemical recurrence after radical prostatectomy. Proc. Natl. Acad. Sci. U.S.A. 2009;106:18437–18442. PubMed PMC

Fredriksson S., Dixon W., Ji H., Koong A.C., Mindrinos M., Davis R.W. Multiplexed protein detection by proximity ligation for cancer biomarker validation. Nat. Methods. 2007;4:327–329. PubMed

Lundberg M., Eriksson A., Tran B., Assarsson E., Fredriksson S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 2011;39:e102. PubMed PMC

Robertson J.G. Mechanistic basis of enzyme-targeted drugs. Biochemistry. 2005;44:5561–5571. PubMed

Hughes J.P., Rees S., Kalindjian S.B., Philpott K.L. Principles of early drug discovery. Brit. J. Pharmacol. 2011;162:1239–1249. PubMed PMC

Inglese J., Johnson R.L., Simeonov A., Xia M.H., Zheng W., Austin C.P., Auld D.S. High-throughput screening assays for the identification of chemical probes. Nat. Chem. Biol. 2007;3:466–479. PubMed

Mesters J.R., Barinka C., Li W.X., Tsukamoto T., Majer P., Slusher B.S., Konvalinka J., Hilgenfeld R. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J. 2006;25:1375–1384. PubMed PMC

Alterio V., Hilvo M., Di Fiore A., Supuran C.T., Pan P.W., Parkkila S., Scaloni A., Pastorek J., Pastorekova S., Pedone C., et al. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc. Natl. Acad. Sci. U.S.A. 2009;106:16233–16238. PubMed PMC

Kinoshita Y., Kuratsukuri K., Landas S., Imaida K., Rovito P.M., Wang C.Y., Haas G.P. Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J. Surg. 2006;30:628–636. PubMed

Wykoff C.C., Beasley N.J.P., Watson P.H., Turner K.J., Pastorek J., Sibtain A., Wilson G.D., Turley H., Talks K.L., Maxwell P.H., et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res. 2000;60:7075–7083. PubMed

Zhou G.X., Ireland J., Rayman P., Finke J., Zhou M. Quantification of carbonic anhydrase IX expression in serum and tissue of renal cell carcinoma patients using enzyme-linked immunosorbent assay: prognostic and diagnostic potentials. Urology. 2010;75:257–261. PubMed

Heck M.M., Retz M., D'Alessandria C., Rauscher I., Scheidhauer K., Maurer T., Storz E., Janssen F., Schottelius M., Wester H.J., et al. Systemic Radioligand Therapy with (177)Lu Labeled Prostate Specific Membrane Antigen Ligand for Imaging and Therapy in Patients with Metastatic Castration Resistant Prostate Cancer. J. Urol. 2016;196:382–391. PubMed

Krall N., Pretto F., Neri D. A bivalent small molecule-drug conjugate directed against carbonic anhydrase IX can elicit complete tumour regression in mice. Chem. Sci. 2014;5:3640–3644.

Xiao Z., Adam B.L., Cazares L.H., Clements M.A., Davis J.W., Schellhammer P.F., Dalmasso E.A., Wright G.L. Quantitation of serum prostate-specific membrane antigen by a novel protein biochip immunoassay discriminates benign from malignant prostate disease. Cancer Res. 2001;61:6029–6033. PubMed

Zavada J., Zavadova Z., Zat'ovicova M., Hyrsl L., Kawaciuk I. Soluble form of carbonic anhydrase IX (CA IX) in the serum and urine of renal carcinoma patients. Brit. J. Cancer. 2003;89:1067–1071. PubMed PMC

Sim S.H., Messenger M.P., Gregory W.M., Wind T.C., Vasudev N.S., Cartledge J., Thompson D., Selby P.J., Banks R.E. Prognostic utility of pre-operative circulating osteopontin, carbonic anhydrase IX and CRP in renal cell carcinoma. Brit. J. Cancer. 2012;107:1131–1137. PubMed PMC

Slusher B.S., Vornov J.J., Thomas A.G., Hurn P.D., Harukuni I., Bhardwaj A., Traystman R.J., Robinson M.B., Britton P., Lu X.C.M., et al. Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury. Nat. Med. 1999;5:1396–1402. PubMed

Bacich D.J., Wozniak K.M., Lu X.C.M., O'Keefe D.S., Callizot N., Heston W.D.W., Slusher B.S. Mice lacking glutamate carboxypeptidase II are protected from peripheral neuropathy and ischemic brain injury. J. Neurochem. 2005;95:314–323. PubMed

Olszewski R.T., Bzdega T., Neale J.H. mGluR3 and not mGluR2 receptors mediate the efficacy of NAAG peptidase inhibitor in validated model of schizophrenia. Schizophr. Res. 2012;136:160–161. PubMed

Chiche J., Ilc K., Laferriere J., Trottier E., Dayan F., Mazure N.M., Brahimi-Horn M.C., Pouyssegur J. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 2009;69:358–368. PubMed

Pacchiano F., Carta F., McDonald P.C., Lou Y.M., Vullo D., Scozzafava A., Dedhar S., Supuran C.T. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J. Med. Chem. 2011;54:1896–1902. PubMed

Lou Y.M., McDonald P.C., Oloumi A., Chia S., Ostlund C., Ahmadi A., Kyle A., Keller U.A.D., Leung S., Huntsman D., et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 2011;71:3364–3376. PubMed

Jackson P.F., Cole D.C., Slusher B.S., Stetz S.L., Ross L.E., Donzanti B.A., Trainor D.A. Design, synthesis, and biological activity of a potent inhibitor of the neuropeptidase N-acetylated alpha-linked acidic dipeptidase. J. Med. Chem. 1996;39:619–622. PubMed

Kozikowski A.P., Nan F., Conti P., Zhang J.H., Ramadan E., Bzdega T., Wroblewska B., Neale J.H., Pshenichkin S., Wroblewski J.T. Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II (NAALADase) J. Med. Chem. 2001;44:298–301. PubMed

van der Post J.P., de Visser S.J., de Kam M.L., Woelfler M., Hilt D.C., Vornov J., Burak E.S., Bortey E., Slusher B.S., Limsakun T., et al. The central nervous system effects, pharmacokinetics and safety of the NAALADase-inhibitor GPI 5693. Brit. J. Clin. Pharmacol. 2005;60:128–136. PubMed PMC

Rais R., Wozniak K., Wu Y., Niwa M., Stathis M., Alt J., Giroux M., Sawa A., Rojas C., Slusher B.S. Selective CNS uptake of the GCP-II inhibitor 2-PMPA following intranasal administration. PLoS One. 2015;10:e0131861. PubMed PMC

Supuran C.T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 2008;7:168–181. PubMed

Barinka C., Rinnova M., Sacha P., Rojas C., Majer P., Slusher B.S., Konvalinka J. Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. J. Neurochem. 2002;80:477–487. PubMed

Tykvart J., Navratil V., Sedlak F., Corey E., Colombatti M., Fracasso G., Koukolik F., Barinka C., Sacha P., Konvalinka J. Comparative analysis of monoclonal antibodies against prostate-specific membrane antigen (PSMA) Prostate. 2014;74:1674–1690. PubMed

Knedlik T., Navratil V., Vik V., Pacik D., Sacha P., Konvalinka J. Detection and quantitation of glutamate carboxypeptidase II in human blood. Prostate. 2014;74:768–780. PubMed

Zavada J., Zavadova Z., Pastorek J., Biesova Z., Jezek J., Velek J. Human tumour-associated cell adhesion protein MN/CA IX: identification of M75 epitope and of the region mediating cell adhesion. Brit. J. Cancer. 2000;82:1808–1813. PubMed PMC

Chrastina A., Zavada J., Parkkila S., Kaluz T., Kaluzova M., Rajcani J., Pastorek J., Pastorekova S. Biodistribution and pharmacokinetics of I-125-labeled monoclonal antibody M75 specific for carbonic anhydrase IX, an intrinsic marker of hypoxia, in nude mice xenografted with human colorectal carcinoma. Int. J. Cancer. 2003;105:873–881. PubMed

Vullo D., Scozzafava A., Pastorekova S., Pastorek J., Supuran C.T. Carbonic anhydrase inhibitors: inhibition of the tumor-associated isozyme IX with fluorine-containing sulfonamides. The first subnanomolar CA IX inhibitor discovered. Bioorg. Med. Chem. Lett. 2004;14:2351–2356. PubMed

Tykvart J., Schimer J., Barinkova J., Pachl P., Postova-Slavetinska L., Majer P., Konvalinka J., Sacha P. Rational design of urea-based glutamate carboxypeptidase II (GCPII) inhibitors as versatile tools for specific drug targeting and delivery. Bioorg. Med. Chem. 2014;22:4099–4108. PubMed

Brynda J., Mader P., Sicha V., Fabry M., Poncova K., Bakardiev M., Gruner B., Cigler P., Rezacova P. Carborane-based carbonic anhydrase inhibitors. Angew. Chem. Int. Edit. 2013;52:13760–13763. PubMed

Sacha P., Knedlik T., Schimer J., Tykvart J., Parolek J., Navratil V., Dvorakova P., Sedlak F., Ulbrich K., Strohalm J., et al. iBodies: modular synthetic antibody mimetics based on hydrophilic polymers decorated with functional moieties. Angew. Chem. Int. Ed. Engl. 2016;55:2356–2360. PubMed PMC

Liu H., Moy P., Kim S., Xia Y., Rajasekaran A., Navarro V., Knudsen B., Bander N.H. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res. 1997;57:3629–3634. PubMed

Hammer O., Harper D.A.T. Paleontological Data Analysis. Malden: Blackwell Publishing; 2006.

Bengtsson M., Stahlberg A., Rorsman P., Kubista M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res. 2005;15:1388–1392. PubMed PMC

Maresca K.P., Hillier S.M., Femia F.J., Keith D., Barone C., Joyal J.L., Zimmerman C.N., Kozikowski A.P., Barrett J.A., Eckelman W.C., et al. A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. J. Med. Chem. 2009;52:347–357. PubMed

Hlouchova K., Barinka C., Konvalinka J., Lubkowski J. Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III. FEBS J. 2009;276:4448–4462. PubMed

Brenner S., Lerner R.A. Encoded combinatorial chemistry. Proc. Natl. Acad. Sci. U.S.A. 1992;89:5381–5383. PubMed PMC

Henry N., Sebe P., Cussenot O. Inappropriate treatment of prostate cancer caused by heterophilic antibody interference. Nat. Clin. Pract. Urol. 2009;6:164–167. PubMed

Poyet C., Hof D., Sulser T., Muntener M. Artificial prostate-specific antigen persistence after radical prostatectomy. J. Clin. Oncol. 2012;30:E62–E63. PubMed

Ali M.M., Li F., Zhang Z.Q., Zhang K.X., Kang D.K., Ankrum J.A., Le X.C., Zhao W.A. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 2014;43:3324–3341. PubMed

Rich D.H., Bernatowicz M.S., Agarwal N.S., Kawai M., Salituro F.G., Schmidt P.G. Inhibition of aspartic proteases by pepstatin and 3-Methylstatine derivatives of pepstatin - evidence for collected-substrate enzyme-inhibition. Biochemistry. 1985;24:3165–3173. PubMed

Karaman M.W., Herrgard S., Treiber D.K., Gallant P., Atteridge C.E., Campbell B.T., Chan K.W., Ciceri P., Davis M.I., Edeen P.T., et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 2008;26:127–132. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...