Identification of 6‑Aryl-7-Deazapurine Ribonucleoside Phosphonates as Inhibitors of Ecto-5'-Nucleotidase (CD73)
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40810155
PubMed Central
PMC12340617
DOI
10.1021/acsptsci.5c00180
Knihovny.cz E-resources
- Keywords
- CD73, DNA-linked probe, ecto-5′-nucleotidase, high-throughput screening, monophosphonate, tumor microenvironment,
- Publication type
- Journal Article MeSH
CD73 is a crucial regulator of adenosine production in the tumor microenvironment and, therefore, represents a valuable target for cancer immunotherapy. While different inhibitors of CD73 have been studied, the progress remains hindered by a lack of high-throughput assays that would allow the screening of large chemical libraries. Establishing a sensitive assay for the detection of CD73 activity could enable additions to the CD73 inhibitor chemical space as well as help facilitate a better understanding of the CD73 reaction mechanism. In this study, we focused on the development and adaptation of DIANA for CD73 high-throughput screening and showed that we can detect enzyme inhibition with high sensitivity. We then used this assay to screen an IOCB library, a proprietary set of chemical compounds with a special focus on nucleotide analogues. We identified several scaffolds that inhibit CD73 and in an SAR study demonstrated fine-tuning of the inhibition properties of monophosphonate analogues. Moreover, using a breast cancer cell line as a model with endogenous CD73 expression, we demonstrated the inhibition of CD73 directly on cells. The establishment of a sensitive assay for the detection of CD73 activity allowed us to develop potent inhibitors of the enzyme with low nanomolar inhibition constants. Our findings further promote the importance of CD73 inhibitors in cancer therapy.
See more in PubMed
Ge G. H., Wang Q. Y., Zhang Z. H., Zhang X., Guo S., Zhang T. J., Meng F. H.. Small molecular CD73 inhibitors: Recent progress and future perspectives. Eur. J. Med. Chem. 2024;264:116028. doi: 10.1016/j.ejmech.2023.116028. PubMed DOI
Hay C. M., Sult E., Huang Q., Mulgrew K., Fuhrmann S. R., McGlinchey K. A., Hammond S. A., Rothstein R., Rios-Doria J., Poon E., Holoweckyj N., Durham N. M., Leow C. C., Diedrich G., Damschroder M., Herbst R., Hollingsworth R. E., Sachsenmeier K. F.. Targeting CD73 in the tumor microenvironment with MEDI9447. Oncoimmunology. 2016;5(8):e1208875. doi: 10.1080/2162402X.2016.1208875. PubMed DOI PMC
Burger R. M., Lowenstein J. M.. Preparation and properties of 5′-nucleotidase from smooth muscle of small intestine. J. Biol. Chem. 1970;245(23):6274–6280. doi: 10.1016/S0021-9258(18)62605-5. PubMed DOI
Bhattarai S., Pippel J., Meyer A., Freundlieb M., Schmies C., Abdelrahman A., Fiene A., Lee S. Y., Zimmermann H., El-Tayeb A., Yegutkin G. G., Sträter N., Müller C. E.. X-Ray Co-Crystal Structure Guides the Way to Subnanomolar Competitive Ecto-5′-Nucleotidase (CD73) Inhibitors for Cancer Immunotherapy. Adv. Ther. 2019;2(10):1900075. doi: 10.1002/adtp.201900075. DOI
Bhattarai S., Freundlieb M., Pippel J., Meyer A., Abdelrahman A., Fiene A., Lee S. Y., Zimmermann H., Yegutkin G. G., Strater N., El-Tayeb A., Muller C. E.. alpha,beta-Methylene-ADP (AOPCP) Derivatives and Analogues: Development of Potent and Selective ecto-5′-Nucleotidase (CD73) Inhibitors. J. Med. Chem. 2015;58(15):6248–6263. doi: 10.1021/acs.jmedchem.5b00802. PubMed DOI
Lawson K. V., Kalisiak J., Lindsey E. A., Newcomb E. T., Leleti M. R., Debien L., Rosen B. R., Miles D. H., Sharif E. U., Jeffrey J. L., Tan J. B. L., Chen A., Zhao S., Xu G., Fu L., Jin L., Park T. W., Berry W., Moschutz S., Scaletti E., Strater N., Walker N. P., Young S. W., Walters M. J., Schindler U., Powers J. P.. Discovery of AB680: A Potent and Selective Inhibitor of CD73. J. Med. Chem. 2020;63(20):11448–11468. doi: 10.1021/acs.jmedchem.0c00525. PubMed DOI
Ebben J., Eickhoff J. C., Deming D. A., Hochster H. S., Turk A. A., Sahai V., Uboha N. V.. QUIC: Phase 2 study of gemcitabine, cisplatin, quemliclustat (AB680), and zimberelimab (AB122) during first-line treatment of advanced biliary tract cancers (BTC)-Big Ten Cancer Research Consortium study BTCRC-GI22–564. J. Clin. Oncol. 2024;42(16_suppl):TPS4195. doi: 10.1200/jco.2024.42.16_suppl.tps4195. DOI
Goueli S. A., Hsiao K.. Monitoring and characterizing soluble and membrane-bound ectonucleotidases CD73 and CD39. PLoS One. 2019;14(10):e0220094. doi: 10.1371/journal.pone.0220094. PubMed DOI PMC
Kumar M., Lowery R., Kumar V.. High-Throughput Screening Assays for Cancer Immunotherapy Targets: Ectonucleotidases CD39 and CD73. SLAS Discovery. 2020;25(3):320–326. doi: 10.1177/2472555219893632. PubMed DOI
McManus J., He T., Gavigan J. A., Marchand G., Vougier S., Bedel O., Ferrari P., Arrebola R., Gillespy T., Gregory R. C., Licht S., Cheng H., Zhang B., Deng G.. A Robust Multiplex Mass Spectrometric Assay for Screening Small-Molecule Inhibitors of CD73 with Diverse Inhibition Modalities. SLAS Discovery. 2018;23(3):264–273. doi: 10.1177/2472555217750386. PubMed DOI
Navratil V., Schimer J., Tykvart J., Knedlik T., Vik V., Majer P., Konvalinka J., Sacha P.. DNA-linked Inhibitor Antibody Assay (DIANA) for sensitive and selective enzyme detection and inhibitor screening. Nucleic Acids Res. 2017;45(2):e10. doi: 10.1093/nar/gkw853. PubMed DOI PMC
Tykvart J., Navratil V., Kugler M., Sacha P., Schimer J., Hlavackova A., Tenora L., Zemanova J., Dejmek M., Kral V., Potacek M., Majer P., Jahn U., Brynda J., Rezacova P., Konvalinka J.. Identification of Novel Carbonic Anhydrase IX Inhibitors Using High-Throughput Screening of Pooled Compound Libraries by DNA-Linked Inhibitor Antibody Assay (DIANA) SLAS Discovery. 2020;25(9):1026–1037. doi: 10.1177/2472555220918836. PubMed DOI
Cermakova K., Simkova A., Wichterle F., Krystufek R., Stanurova J., Vanickova Z., Busek P., Konvalinka J., Sacha P.. Sensitive quantification of fibroblast activation protein and high-throughput screening for inhibition by FDA-approved compounds. Eur. J. Med. Chem. 2024;280:116948. doi: 10.1016/j.ejmech.2024.116948. PubMed DOI
Schmies C. C., Rolshoven G., Idris R. M., Losenkova K., Renn C., Schakel L., Al-Hroub H., Wang Y., Garofano F., Schmidt-Wolf I. G. H., Zimmermann H., Yegutkin G. G., Muller C. E.. Fluorescent Probes for Ecto-5′-nucleotidase (CD73) ACS Med. Chem. Lett. 2020;11(11):2253–2260. doi: 10.1021/acsmedchemlett.0c00391. PubMed DOI PMC
An H., Statsyuk A. V.. Development of activity-based probes for ubiquitin and ubiquitin-like protein signaling pathways. J. Am. Chem. Soc. 2013;135(45):16948–16962. doi: 10.1021/ja4099643. PubMed DOI
Sharif E. U., Kalisiak J., Lawson K. V., Miles D. H., Newcomb E., Lindsey E. A., Rosen B. R., Debien L. P. P., Chen A., Zhao X., Young S. W., Walker N. P., Strater N., Scaletti E. R., Jin L., Xu G., Leleti M. R., Powers J. P.. Discovery of Potent and Selective Methylenephosphonic Acid CD73 Inhibitors. J. Med. Chem. 2021;64(1):845–860. doi: 10.1021/acs.jmedchem.0c01835. PubMed DOI
Malnuit V., Smoleń S., Tichy M., Poštová Slavětínská L., Hocek M.. Synthesis of Cyclic and Acyclic Nucleoside Phosphonates and Sulfonamides Derived from 6-(Thiophen-2-yl)-7-fluoro-7-deazapurine. Eur. J. Org Chem. 2019;2019(31–32):5409–5423. doi: 10.1002/ejoc.201900509. DOI
Hillman J. M. L., Roberts S. M.. Preparation of carbocyclic, phosphonate analogues of cyclic adenosine monophosphate (cAMP) J. Chem. Soc., Perkin Trans. 1. 1997;1(24):3601–3608. doi: 10.1039/a704961g. DOI
Naus P., Pohl R., Votruba I., Dzubak P., Hajduch M., Ameral R., Birkus G., Wang T., Ray A. S., Mackman R., Cihlar T., Hocek M.. 6-(Het)aryl-7-deazapurine ribonucleosides as novel potent cytostatic agents. J. Med. Chem. 2010;53(1):460–470. doi: 10.1021/jm901428k. PubMed DOI
Rocha-Vieira T. C., Lacerda-Abreu M. A., Carvalho-Kelly L. F., Santos-Araújo S., Gondim K. C., Meyer-Fernandes J. R.. Comparative characterisation of an ecto-5′-nucleotidase (CD73) in non-tumoral MCF10-A breast cells and triple-negative MDA-MB-231 breast cancer cells. Cell Biol. Int. 2024;48(9):1354–1363. doi: 10.1002/cbin.12202. PubMed DOI
Thorne N., Auld D. S., Inglese J.. Apparent activity in high-throughput screening: origins of compound-dependent assay interference. Curr. Opin. Chem. Biol. 2010;14(3):315–324. doi: 10.1016/j.cbpa.2010.03.020. PubMed DOI PMC
Yang C., Tichý M., Poštová Slavětínská L., Vaiedelich E., Gurská S., Džubák P., Hajdúch M., Hocek M.. Synthesis and Biological Profiling of Benzofuro-Fused 7-Deazapurine Nucleosides. Eur. J. Org Chem. 2023;26(44):e202300723. doi: 10.1002/ejoc.202300723. DOI