Mycosynthesis of Metal-Containing Nanoparticles-Fungal Metal Resistance and Mechanisms of Synthesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VEGA 1/0175/22
Scientific Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences (Vedecká grantová agentúra MŠVVaŠ SR a SAV)
SP2022/8
The Project for Specific University Research (SGS), Faculty of Mining and Geology of VSB - Technical University of Ostrava
04-GASPU-2021
Grant Agency of the Slovak University of Agriculture in Nitra
Ramanujan fellowship
Science and Engineering Research Board
PubMed
36430561
PubMed Central
PMC9696665
DOI
10.3390/ijms232214084
PII: ijms232214084
Knihovny.cz E-zdroje
- Klíčová slova
- biomolecule, biosynthesis, fungus, green synthesis, metal oxide nanoparticle, metallic nanoparticle, nanomaterial,
- MeSH
- bioakumulace MeSH
- biologický transport MeSH
- katalýza MeSH
- kovové nanočástice * MeSH
- redukční činidla MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- redukční činidla MeSH
In the 21st century, nanomaterials play an increasingly important role in our lives with applications in many sectors, including agriculture, biomedicine, and biosensors. Over the last two decades, extensive research has been conducted to find ways to synthesise nanoparticles (NPs) via mediation with fungi or fungal extracts. Mycosynthesis can potentially be an energy-efficient, highly adjustable, environmentally benign alternative to conventional physico-chemical procedures. This review investigates the role of metal toxicity in fungi on cell growth and biochemical levels, and how their strategies of resistance, i.e., metal chelation, biomineral formation, biosorption, bioaccumulation, compartmentalisation, and efflux of metals from cells, contribute to the synthesis of metal-containing NPs used in different applications, e.g., biomedical, antimicrobial, catalytic, biosensing, and precision agriculture. The role of different synthesis conditions, including that of fungal biomolecules serving as nucleation centres or templates for NP synthesis, reducing agents, or capping agents in the synthesis process, is also discussed. The authors believe that future studies need to focus on the mechanism of NP synthesis, as well as on the influence of such conditions as pH, temperature, biomass, the concentration of the precursors, and volume of the fungal extracts on the efficiency of the mycosynthesis of NPs.
Zobrazit více v PubMed
Alavi M., Nokhodchi A. Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discov. Today. 2021;26:1953–1962. doi: 10.1016/j.drudis.2021.03.030. PubMed DOI
Kolenčík M., Ernst D., Urík M., Ďurišová Ľ., Bujdoš M., Šebesta M., Dobročka E., Kšiňan S., Illa R., Yu Q., et al. Foliar Application of Low Concentrations of Titanium Dioxide and Zinc Oxide Nanoparticles to the Common Sunflower under Field Conditions. Nanomaterials. 2020;10:1619. doi: 10.3390/nano10081619. PubMed DOI PMC
Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Ďurišová Ľ., Bujdoš M., Černý I., Chlpík J., Juriga M., et al. Effects of Foliar Application of ZnO Nanoparticles on Lentil Production, Stress Level and Nutritional Seed Quality under Field Conditions. Nanomaterials. 2022;12:310. doi: 10.3390/nano12030310. PubMed DOI PMC
Ndlovu N., Tatenda M., Clemence M., Munyengwa N. Nanotechnology Applications in Crop Production and Food Systems. Int. J. Plant Breed. Crop Sci. 2020;7:603–613.
Abd-Elsalam K.A., editor. Fungal Cell Factories for Sustainable Nanomaterials Productions and Agricultural Applications. Elsevier; Amsterdam, The Netherlands: 2022.
Wu X., Chen G., Shen J., Li Z., Zhang Y., Han G. Upconversion Nanoparticles: A Versatile Solution to Multiscale Biological Imaging. Bioconjugate Chem. 2015;26:166–175. doi: 10.1021/bc5003967. PubMed DOI PMC
Holišová V., Urban M., Kolenčík M., Němcová Y., Schröfel A., Peikertová P., Slabotinský J., Kratošová G. Biosilica-nanogold composite: Easy-to-prepare catalyst for soman degradation. Arab. J. Chem. 2019;12:262–271. doi: 10.1016/j.arabjc.2017.08.003. DOI
Holišová V., Urban M., Konvičková Z., Kolenčík M., Mančík P., Slabotinský J., Kratošová G., Plachá D. Colloidal stability of phytosynthesised gold nanoparticles and their catalytic effects for nerve agent degradation. Sci. Rep. 2021;11:4071. doi: 10.1038/s41598-021-83460-1. PubMed DOI PMC
Bala R., Kalia A., Dhaliwal S.S. Evaluation of Efficacy of ZnO Nanoparticles as Remedial Zinc Nanofertilizer for Rice. J. Soil Sci. Plant Nutr. 2019;19:379–389. doi: 10.1007/s42729-019-00040-z. DOI
Pištora J., Vlček J., Lesňák M., Blažek D., Kolenčík M. Optical Methods in Diagnostics of Nanostructured Materials. 1st ed. Akademické nakladatelství CERM; Brno, Czech Republic: 2015.
Illa R., Ješko R., Silber R., Životský O., Kutláková K.M., Matějová L., Kolenčík M., Pištora J., Hamrle J. Structural, magnetic, optical, and magneto-optical properties of CoFe2O4 thin films fabricated by a chemical approach. Mater. Res. Bull. 2019;117:96–102. doi: 10.1016/j.materresbull.2019.05.002. DOI
Weir A., Westerhoff P., Fabricius L., Hristovski K., von Goetz N. Titanium Dioxide Nanoparticles in Food and Personal Care Products. Environ. Sci. Technol. 2012;46:2242–2250. doi: 10.1021/es204168d. PubMed DOI PMC
Konvičková Z., Schröfel A., Kolenčík M., Dědková K., Peikertová P., Žídek M., Seidlerová J., Kratošová G. Antimicrobial bionanocomposite–from precursors to the functional material in one simple step. J. Nanoparticle Res. 2016;18:368. doi: 10.1007/s11051-016-3664-y. DOI
Jamkhande P.G., Ghule N.W., Bamer A.H., Kalaskar M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019;53:101174. doi: 10.1016/j.jddst.2019.101174. DOI
Dhillon G.S., Brar S.K., Kaur S., Verma M. Green approach for nanoparticle biosynthesis by fungi: Current trends and applications. Crit. Rev. Biotechnol. 2011;32:49–73. doi: 10.3109/07388551.2010.550568. PubMed DOI
Horváthová H., Dercová K., Tlčíková M., Hurbanová M. Biological Synthesis of Nanoparticles: Iron-based Plant Bionanoparticles and Their Use for Remediation of the Contaminated Environment. Chem. Listy. 2022;116:405–415. doi: 10.54779/chl20220405. DOI
Sastry M., Ahmad A., Khan M.I. Biosynthesis of Metal Nanoparticles Using Fungi and Actinomycete. Curr. Sci. 2003;85:162–170.
Salem S.S., Fouda A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Element Res. 2021;199:344–370. doi: 10.1007/s12011-020-02138-3. PubMed DOI
Yadav A., Kon K., Kratošová G., Durán N., Ingle A.P., Rai M. Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: Progress and key aspects of research. Biotechnol. Lett. 2015;37:2099–2120. doi: 10.1007/s10529-015-1901-6. PubMed DOI
Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S.R., Khan M.I., Parishcha R., Ajaykumar P.V., Alam M., Kumar R., et al. Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Lett. 2001;1:515–519. doi: 10.1021/nl0155274. DOI
Šebesta M., Urík M., Bujdoš M., Kolenčík M., Vávra I., Dobročka E., Kim H., Matúš P. Fungus Aspergillus niger Processes Exogenous Zinc Nanoparticles into a Biogenic Oxalate Mineral. J. Fungi. 2020;6:210. doi: 10.3390/jof6040210. PubMed DOI PMC
Gadd G.M. Mycotransformation of organic and inorganic substrates. Mycologist. 1999;18:60–70. doi: 10.1017/S0269915X04002022. DOI
Kang X., Csetenyi L., Gadd G.M. Colonization and bioweathering of monazite by Aspergillus niger: Solubilization and precipitation of rare earth elements. Environ. Microbiol. 2021;23:3970–3986. doi: 10.1111/1462-2920.15402. PubMed DOI
Kolenčík M., Urík M., Štubna J. Heterotrophic Leaching and Its Application in Biohydrometallurgy. Chem. Listy. 2014;108:1040–1045.
Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S.R., Khan M.I., Ramani R., Pasricha R., Ajayakumar P.V., Alam M., et al. Bioreduction of AuCl4−Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed. Angew. Chem. Int. Ed. 2001;40:3585–3588. doi: 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K. PubMed DOI
Priyadarshini E., Priyadarshini S.S., Cousins B.G., Pradhan N. Metal-Fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere. 2021;274:129976. doi: 10.1016/j.chemosphere.2021.129976. PubMed DOI
Santos T., Silva T., Cardoso J., Albuquerque-Júnior R., Zielinska A., Souto E., Severino P., Mendonça M. Biosynthesis of Silver Nanoparticles Mediated by Entomopathogenic Fungi: Antimicrobial Resistance, Nanopesticides, and Toxicity. Antibiotics. 2021;10:852. doi: 10.3390/antibiotics10070852. PubMed DOI PMC
Mousa S.A., El-Sayed E.-S.R., Mohamed S.S., El-Seoud M.A.A., Elmehlawy A.A., Abdou D.A.M. Novel mycosynthesis of Co3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles by the endophytic Aspergillus terreus and evaluation of their antioxidant and antimicrobial activities. Appl. Microbiol. Biotechnol. 2021;105:741–753. doi: 10.1007/s00253-020-11046-4. PubMed DOI
Mukherjee P., Senapati S., Mandal D., Ahmad A., Khan M.I., Kumar R., Sastry M. Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium oxysporum. ChemBioChem. 2002;3:461–463. doi: 10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X. PubMed DOI
Durán N., Marcato P.D., Alves O.L., De Souza G.I.H., Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 2005;3:8. doi: 10.1186/1477-3155-3-8. PubMed DOI PMC
Molnár Z., Bódai V., Szakacs G., Erdélyi B., Fogarassy Z., Sáfrán G., Varga T., Kónya Z., Tóth-Szeles E., Szűcs R., et al. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci. Rep. 2018;8:3943. doi: 10.1038/s41598-018-22112-3. PubMed DOI PMC
Saratale R.G., Karuppusamy I., Saratale G.D., Pugazhendhi A., Kumar G., Park Y., Ghodake G.S., Bharagava R.N., Banu J.R., Shin H.S. A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids Surf. B Biointerfaces. 2018;170:20–35. doi: 10.1016/j.colsurfb.2018.05.045. PubMed DOI
Sood R., Chopra D.S. Metal–plant frameworks in nanotechnology: An overview. Phytomedicine. 2017;50:148–156. doi: 10.1016/j.phymed.2017.08.025. PubMed DOI
Hariram M., Vivekanandhan S. Phytochemical Process for the Functionalization of Materials with Metal Nanoparticles: Current Trends and Future Perspectives. ChemistrySelect. 2018;3:13561–13585. doi: 10.1002/slct.201802748. DOI
Priyadarshini E., Priyadarshini S.S., Pradhan N. Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Appl. Microbiol. Biotechnol. 2019;103:3297–3316. doi: 10.1007/s00253-019-09685-3. PubMed DOI
Ali J., Ali N., Wang L., Waseem H., Pan G. Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J. Microbiol. Methods. 2019;159:18–25. doi: 10.1016/j.mimet.2019.02.010. PubMed DOI
Saxena P. Harish Phyco-Nanotechnology: New Horizons of Gold Nano-Factories. Proc. Natl. Acad. Sci. India Sect. B Boil. Sci. 2016;89:1–11. doi: 10.1007/s40011-016-0813-0. DOI
Saw P.E., Lee S., Jon S. Naturally Occurring Bioactive Compound-Derived Nanoparticles for Biomedical Applications. Adv. Ther. 2019;2:1800146. doi: 10.1002/adtp.201800146. DOI
An overview on the green synthesis of nanoparticles and other nano-materials using enzymes and their potential applications. Biointerface Res. Appl. Chem. 2019;9:4255–4271. doi: 10.33263/BRIAC95.255271. DOI
El Shafey A.M. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Process. Synth. 2020;9:304–339. doi: 10.1515/gps-2020-0031. DOI
Aboyewa J.A., Sibuyi N.R.S., Meyer M., Oguntibeju O.O. Green Synthesis of Metallic Nanoparticles Using Some Selected Medicinal Plants from Southern Africa and Their Biological Applications. Plants. 2021;10:1929. doi: 10.3390/plants10091929. PubMed DOI PMC
Huston M., DeBella M., DiBella M., Gupta A. Green Synthesis of Nanomaterials. Nanomaterials. 2021;11:2130. doi: 10.3390/nano11082130. PubMed DOI PMC
Kumar J.A., Krithiga T., Manigandan S., Sathish S., Renita A.A., Prakash P., Prasad B.N., Kumar T.P., Rajasimman M., Hosseini-Bandegharaei A., et al. A focus to green synthesis of metal/metal based oxide nanoparticles: Various mechanisms and applications towards ecological approach. J. Clean. Prod. 2021;324:129198. doi: 10.1016/j.jclepro.2021.129198. DOI
Berta L., Coman N.-A., Rusu A., Tanase C. A Review on Plant-Mediated Synthesis of Bimetallic Nanoparticles, Characterisation and Their Biological Applications. Materials. 2021;14:7677. doi: 10.3390/ma14247677. PubMed DOI PMC
Roy A., Elzaki A., Tirth V., Kajoak S., Osman H., Algahtani A., Islam S., Faizo N.L., Khandaker M.U., Islam M.N., et al. Biological Synthesis of Nanocatalysts and Their Applications. Catalysts. 2021;11:1494. doi: 10.3390/catal11121494. DOI
Agrawal K., Gupta V.K., Verma P. Microbial cell factories a new dimension in bio-nanotechnology: Exploring the robustness of nature. Crit. Rev. Microbiol. 2021;48:397–427. doi: 10.1080/1040841X.2021.1977779. PubMed DOI
Sharma D., Kanchi S., Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab. J. Chem. 2019;12:3576–3600. doi: 10.1016/j.arabjc.2015.11.002. DOI
Rather A.H., Wani T.U., Khan R.S., Abdal-Hay A., Rather S.-U., Macossay J., Sheikh F.A. Recent progress in the green fabrication of cadmium sulfide and cadmium oxide nanoparticles: Synthesis, antimicrobial and cytotoxic studies. Mater. Sci. Eng. B. 2022;286:116022. doi: 10.1016/j.mseb.2022.116022. DOI
Vargas G., Cypriano J., Correa T., Leão P., Bazylinski D.A., Abreu F. Applications of Magnetotactic Bacteria, Magnetosomes and Magnetosome Crystals in Biotechnology and Nanotechnology: Mini-Review. Molecules. 2018;23:2438. doi: 10.3390/molecules23102438. PubMed DOI PMC
Mousavi S.M., Hashemi S.A., Ghasemi Y., Atapour A., Amani A.M., Savar Dashtaki A., Babapoor A., Arjmand O. Green synthesis of silver nanoparticles toward bio and medical applications: Review study. Artif. Cells Nanomed. Biotechnol. 2018;46:S855–S872. doi: 10.1080/21691401.2018.1517769. PubMed DOI
Timoszyk A. A review of the biological synthesis of gold nanoparticles using fruit extracts: Scientific potential and application. Bull. Mater. Sci. 2018;41:154. doi: 10.1007/s12034-018-1673-4. DOI
Khatoon U.T., Mantravadi K.M., Rao G.V.S.N. Strategies to synthesise copper oxide nanoparticles and their bio applications—A review. Mater. Sci. Technol. 2018;34:2214–2222. doi: 10.1080/02670836.2018.1482600. DOI
Waghmode M.S., Gunjal A.B., Mulla J.A., Patil N.N., Nawani N.N. Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation. SN Appl. Sci. 2019;1:310. doi: 10.1007/s42452-019-0337-3. DOI
Rahman S., Rahman L., Khalil A.T., Ali N., Zia D., Ali M., Shinwari Z.K. Endophyte-mediated synthesis of silver nanoparticles and their biological applications. Appl. Microbiol. Biotechnol. 2019;103:2551–2569. doi: 10.1007/s00253-019-09661-x. PubMed DOI
Puja P., Kumar P. A perspective on biogenic synthesis of platinum nanoparticles and their biomedical applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018;211:94–99. doi: 10.1016/j.saa.2018.11.047. PubMed DOI
Yusof H.M., Mohamad R., Zaidan U.H., Rahman N.A.A. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. J. Anim. Sci. Biotechnol. 2019;10:57. doi: 10.1186/s40104-019-0368-z. PubMed DOI PMC
Jayaprakash M., Kannappan S. An overview of a sustainable approach to the biosynthesis of AgNPs for electrochemical sensors. Arab. J. Chem. 2022;15:104324. doi: 10.1016/j.arabjc.2022.104324. DOI
Singh J., Dutta T., Kim K.-H., Rawat M., Samddar P., Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018;16:84. doi: 10.1186/s12951-018-0408-4. PubMed DOI PMC
Hembram K.C., Kumar R., Kandha L., Parhi P., Kundu C.N., Bindhani B.K. Therapeutic prospective of plant-induced silver nanoparticles: Application as antimicrobial and anticancer agent. Artif. Cells Nanomed. Biotechnol. 2018;46:S38–S51. doi: 10.1080/21691401.2018.1489262. PubMed DOI
Nandhini N., Rajeshkumar S., Mythili S. The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation. Biocatal. Agric. Biotechnol. 2019;19:101138. doi: 10.1016/j.bcab.2019.101138. DOI
Andra S., Balu S.K., Jeevanandham J., Muthalagu M., Vidyavathy M., Chan Y.S., Danquah M.K. Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2019;392:755–771. doi: 10.1007/s00210-019-01666-7. PubMed DOI
Gebre S.H., Sendeku M.G. New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: An overview. SN Appl. Sci. 2019;1:928. doi: 10.1007/s42452-019-0931-4. DOI
Castillo-Henriquez L., Alfaro-Aguilar K., Ugalde-Alvarez J., Vega-Fernandez L., Montes de Oca-Vasquez G., Vega-Baudrit J.R. Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. Nanomaterials. 2020;10:1763. doi: 10.3390/nano10091763. PubMed DOI PMC
Zare E.N., Padil V.V., Mokhtari B., Venkateshaiah A., Wacławek S., Černík M., Tay F.R., Varma R.S., Makvandi P. Advances in biogenically synthesized shaped metal- and carbon-based nanoarchitectures and their medicinal applications. Adv. Colloid Interface Sci. 2020;283:102236. doi: 10.1016/j.cis.2020.102236. PubMed DOI
Uzair B., Liaqat A., Iqbal H., Menaa B., Razzaq A., Thiripuranathar G., Rana N.F., Menaa F. Green and Cost-Effective Synthesis of Metallic Nanoparticles by Algae: Safe Methods for Translational Medicine. Bioengineering. 2020;7:129. doi: 10.3390/bioengineering7040129. PubMed DOI PMC
Hanafy M.H. Myconanotechnology in veterinary sector: Status quo and future perspectives. Int. J. Vet. Sci. Med. 2018;6:270–273. doi: 10.1016/j.ijvsm.2018.11.003. PubMed DOI PMC
Khandel P., Shahi S.K. Mycogenic nanoparticles and their bio-prospective applications: Current status and future challenges. J. Nanostructure Chem. 2018;8:369–391. doi: 10.1007/s40097-018-0285-2. DOI
Chauhan A., Anand J., Parkash V., Rai N. Biogenic synthesis: A sustainable approach for nanoparticles synthesis mediated by fungi. Inorg. Nano-Metal Chem. 2022:1–14. doi: 10.1080/24701556.2021.2025078. DOI
Owaid M.N., Ibraheem I. Mycosynthesis of nanoparticles using edible and medicinal mushrooms. Eur. J. Nanomed. 2017;9:5–23. doi: 10.1515/ejnm-2016-0016. DOI
Guilger Casagrande M., De Lima R. Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Front. Bioeng. Biotechnol. 2019;7:287. doi: 10.3389/fbioe.2019.00287. PubMed DOI PMC
Khan A.U., Malik N., Khan M., Cho M.H., Khan M.M. Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess Biosyst. Eng. 2017;41:1–20. doi: 10.1007/s00449-017-1846-3. PubMed DOI
Khalid S., Shahid M., Niazi N.K., Murtaza B., Bibi I., Dumat C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017;182:247–268. doi: 10.1016/j.gexplo.2016.11.021. DOI
Hou D., O’Connor D., Igalavithana A.D., Alessi D.S., Luo J., Tsang D.C.W., Sparks D.L., Yamauchi Y., Rinklebe J., Ok Y.S. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 2020;1:366–381. doi: 10.1038/s43017-020-0061-y. DOI
Igiri B.E., Okoduwa S.I., Idoko G.O., Akabuogu E.P., Adeyi A.O., Ejiogu I.K. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. J. Toxicol. 2018;2018:2568038. doi: 10.1155/2018/2568038. PubMed DOI PMC
Graz M., Pawlikowska-Pawlęga B., Jarosz-Wilkołazka A. Growth inhibition and intracellular distribution of Pb ions by the white-rot fungus Abortiporus biennis. Int. Biodeterior. Biodegrad. 2011;65:124–129. doi: 10.1016/j.ibiod.2010.08.010. DOI
Liaquat F., Munis M.F.H., Haroon U., Arif S., Saqib S., Zaman W., Khan A.R., Shi J., Che S., Liu Q. Evaluation of Metal Tolerance of Fungal Strains Isolated from Contaminated Mining Soil of Nanjing, China. Biology. 2020;9:469. doi: 10.3390/biology9120469. PubMed DOI PMC
Rose P.K., Devi R. Heavy metal tolerance and adaptability assessment of indigenous filamentous fungi isolated from industrial wastewater and sludge samples. Beni-Suef Univ. J. Basic Appl. Sci. 2018;7:688–694. doi: 10.1016/j.bjbas.2018.08.001. DOI
Colpaert J.V., Van Assche J.A. The effects of cadmium and the cadmium-zinc interaction on the axenic growth of ectomycorrhizal fungi. Plant Soil. 1992;145:237–243. doi: 10.1007/BF00010352. DOI
Traxler L., Shrestha J., Richter M., Krause K., Schäfer T., Kothe E. Metal adaptation and transport in hyphae of the wood-rot fungus Schizophyllum commune. J. Hazard. Mater. 2021;425:127978. doi: 10.1016/j.jhazmat.2021.127978. PubMed DOI
Jo Y.-K., Kim B.H., Jung G. Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi. Plant Dis. 2009;93:1037–1043. doi: 10.1094/PDIS-93-10-1037. PubMed DOI
Malandrakis A.A., Kavroulakis N., Chrysikopoulos C. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci. Total Environ. 2019;670:292–299. doi: 10.1016/j.scitotenv.2019.03.210. PubMed DOI
Barros D., Pradhan A., Pascoal C., Cássio F. Proteomic responses to silver nanoparticles vary with the fungal ecotype. Sci. Total Environ. 2020;704:135385. doi: 10.1016/j.scitotenv.2019.135385. PubMed DOI
Sun M., Yu Q., Hu M., Hao Z., Zhang C., Li M. Lead sulfide nanoparticles increase cell wall chitin content and induce apoptosis in Saccharomyces cerevisiae. J. Hazard. Mater. 2014;273:7–16. doi: 10.1016/j.jhazmat.2014.03.008. PubMed DOI
Lemire J.A., Harrison J.J., Turner R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013;11:371–384. doi: 10.1038/nrmicro3028. PubMed DOI
Tamás M.J., Sharma S.K., Ibstedt S., Jacobson T., Christen P. Heavy Metals and Metalloids As a Cause for Protein Misfolding and Aggregation. Biomolecules. 2014;4:252–267. doi: 10.3390/biom4010252. PubMed DOI PMC
Mohan P.M., Sastry K.S. Excretion of pyruvate in nickel toxicity in wild type and Ni2+ resistant mutants of Neurospora crassa. J. Biosci. 1984;6:283–288. doi: 10.1007/BF02716742. DOI
Ramadan S.E., Razak A.A., Soliman H.G. Influence of cadmium on certain biological activities in a cadmium-tolerant fungi. Biol. Trace Element Res. 1988;18:179–190. doi: 10.1007/BF02917502. PubMed DOI
Faller P., Kienzler K., Krieger-Liszkay A. Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. Biochim. Biophys. Acta. 2005;1706:158–164. doi: 10.1016/j.bbabio.2004.10.005. PubMed DOI
Hartwig A. Zinc Finger Proteins as Potential Targets for Toxic Metal Ions: Differential Effects on Structure and Function. Antioxid. Redox Signal. 2001;3:625–634. doi: 10.1089/15230860152542970. PubMed DOI
Jin Y.H., Clark A.B., Slebos R.J.C., Al-Refai H., Taylor J., Kunkel T., Resnick M., Gordenin D.A. Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat. Genet. 2003;34:326–329. doi: 10.1038/ng1172. PubMed DOI PMC
Naganuma A., Miura N., Kaneko S., Mishina T., Hosoya S., Miyairi S., Furuchi T., Kuge S. GFAT as a target molecule of methylmercury toxicity in Saccharomyces cerevisiae. FASEB J. 2000;14:968–972. doi: 10.1096/fasebj.14.7.968. PubMed DOI
Sharma S.K., Goloubinoff P., Christen P. Heavy metal ions are potent inhibitors of protein folding. Biochem. Biophys. Res. Commun. 2008;372:341–345. doi: 10.1016/j.bbrc.2008.05.052. PubMed DOI
Robinson J., Isikhuemhen O., Anike F. Fungal–Metal Interactions: A Review of Toxicity and Homeostasis. J. Fungi. 2021;7:225. doi: 10.3390/jof7030225. PubMed DOI PMC
Zhang Q., Zeng G., Chen G., Yan M., Chen A., Du J., Huang J., Yi B., Zhou Y., He X., et al. The Effect of Heavy Metal-Induced Oxidative Stress on the Enzymes in White Rot Fungus Phanerochaete chrysosporium. Appl. Biochem. Biotechnol. 2014;175:1281–1293. doi: 10.1007/s12010-014-1298-z. PubMed DOI
Ameen F., Alsamhary K., Alabdullatif J.A., Alnadhari S. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol. Environ. Saf. 2021;213:112027. doi: 10.1016/j.ecoenv.2021.112027. PubMed DOI
García-Saucedo C., Field J.A., Otero-Gonzalez L., Sierra-Álvarez R. Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae. J. Hazard. Mater. 2011;192:1572–1579. doi: 10.1016/j.jhazmat.2011.06.081. PubMed DOI
Otero-González L., García-Saucedo C., Field J.A., Sierra-Álvarez R. Toxicity of TiO2, ZrO2, Fe0, Fe2O3, and Mn2O3 nanoparticles to the yeast, Saccharomyces cerevisiae. Chemosphere. 2013;93:1201–1206. doi: 10.1016/j.chemosphere.2013.06.075. PubMed DOI
Ezzouhri L., Castro E., Moya M., Espinola F., Lairini K. Heavy Metal Tolerance of Filamentous Fungi Isolated from Polluted Sites in Tangier, Morocco. Afr. J. Microbiol. Res. 2009;3:35–48. doi: 10.5897/AJMR.9000354. DOI
Colpaert J.V., Vandenkoornhuyse P., Adriaensen K., Vangronsveld J. Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus Luteus. New Phytol. 2000;147:367–379. doi: 10.1046/j.1469-8137.2000.00694.x. DOI
Howe R., Evans R.L., Ketteridge S.W. Copper-binding proteins in ectomycorrhizal fungi. New Phytol. 1997;135:123–131. doi: 10.1046/j.1469-8137.1997.00622.x. PubMed DOI
Baldrian P., Gabriel J. Intraspecific Variability in Growth Response to Cadmium of the Wood-Rotting Fungus Piptoporus Betulinus. Mycologia. 2002;94:428–436. doi: 10.1080/15572536.2003.11833208. PubMed DOI
Canovas D., Vooijs R., Schat H., de Lorenzo V. The Role of Thiol Species in the Hypertolerance of Aspergillus sp. P37 to Arsenic. J. Biol. Chem. 2004;279:51234–51240. doi: 10.1074/jbc.M408622200. PubMed DOI
Geetha N., Bhavya G., Abhijith P., Shekhar R., Dayananda K., Jogaiah S. Insights into nanomycoremediation: Secretomics and mycogenic biopolymer nanocomposites for heavy metal detoxification. J. Hazard. Mater. 2021;409:124541. doi: 10.1016/j.jhazmat.2020.124541. PubMed DOI
Ott T., Fritz E., Polle A., Schützendübel A. Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiol. Ecol. 2002;42:359–366. doi: 10.1111/j.1574-6941.2002.tb01025.x. PubMed DOI
Courbot M., Diez L., Ruotolo R., Chalot M., Leroy P. Cadmium-Responsive Thiols in the Ectomycorrhizal Fungus Paxillus involutus. Appl. Environ. Microbiol. 2004;70:7413–7417. doi: 10.1128/AEM.70.12.7413-7417.2004. PubMed DOI PMC
Su Z., Zeng Y., Li X., Perumal A.B., Zhu J., Lu X., Dai M., Liu X., Lin F. The Endophytic Fungus Piriformospora Indica-Assisted Alleviation of Cadmium in Tobacco. J. Fungi. 2021;7:675. doi: 10.3390/jof7080675. PubMed DOI PMC
Morselt A.F.W., Smits W.T.M., Limonard T. Histochemical demonstration of heavy metal tolerance in ectomycorrhizal fungi. Plant Soil. 1986;96:417–420. doi: 10.1007/BF02375146. DOI
Leonhardt T., Sácký J., Šimek P., Šantrůček J., Kotrba P. Metallothionein-like peptides involved in sequestration of Zn in the Zn-accumulating ectomycorrhizal fungus Russula atropurpurea. Metallomics. 2014;6:1693–1701. doi: 10.1039/C4MT00141A. PubMed DOI
Sardar U.R., Bhargavi E., Devi I., Bhunia B., Tiwari O.N. Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: A critical review. Carbohydr. Polym. 2018;199:353–364. doi: 10.1016/j.carbpol.2018.07.037. PubMed DOI
Liu W., Zhang J., Jin Y., Zhao X., Cai Z. Adsorption of Pb(II), Cd(II) and Zn(II) by extracellular polymeric substances extracted from aerobic granular sludge: Efficiency of protein. J. Environ. Chem. Eng. 2015;3:1223–1232. doi: 10.1016/j.jece.2015.04.009. DOI
Dang C., Yang Z., Liu W., Du P., Cui F., He K. Role of extracellular polymeric substances in biosorption of Pb2+ by a high metal ion tolerant fungal strain Aspergillus niger PTN31. J. Environ. Chem. Eng. 2018;6:2733–2742. doi: 10.1016/j.jece.2018.04.005. DOI
Wei L., Li Y., Noguera D., Zhao N., Song Y., Ding J., Zhao Q., Cui F. Adsorption of Cu2+ and Zn2+ by extracellular polymeric substances (EPS) in different sludges: Effect of EPS fractional polarity on binding mechanism. J. Hazard. Mater. 2017;321:473–483. doi: 10.1016/j.jhazmat.2016.05.016. PubMed DOI
Tourney J., Ngwenya B.T. The role of bacterial extracellular polymeric substances in geomicrobiology. Chem. Geol. 2014;386:115–132. doi: 10.1016/j.chemgeo.2014.08.011. DOI
Vacchina V., Baldrián P., Gabriel J., Szpunar J. Investigation of the response of wood-rotting fungi to copper stress by size-exclusion chromatography and capillary zone electrophoresis with ICP MS detection. Anal. Bioanal. Chem. 2001;372:453–456. doi: 10.1007/s00216-001-1104-y. PubMed DOI
Li N., Liu J., Yang R., Wu L. Distribution, characteristics of extracellular polymeric substances of Phanerochaete chrysosporium under lead ion stress and the influence on Pb removal. Sci. Rep. 2020;10:17633. doi: 10.1038/s41598-020-74983-0. PubMed DOI PMC
Suh J.H., Yun J.W., Kim D.S. Effect of extracellular polymeric substances (EPS) on Pb2+ accumulation by Aureobasidium pullulans. Bioprocess Biosyst. Eng. 1999;21:1–4. doi: 10.1007/PL00009061. DOI
Cao F., Bourven I., Guibaud G., Rene E.R., Lens P.N., Pechaud Y., van Hullebusch E.D. Alteration of the characteristics of extracellular polymeric substances (EPS) extracted from the fungus Phanerochaete chrysosporium when exposed to sub-toxic concentrations of nickel (II) Int. Biodeterior. Biodegrad. 2018;129:179–188. doi: 10.1016/j.ibiod.2018.02.009. DOI
Mattoon E., Cordero R., Casadevall A. Fungal Melanins and Applications in Healthcare, Bioremediation and Industry. J. Fungi. 2021;7:488. doi: 10.3390/jof7060488. PubMed DOI PMC
Fogarty R.V., Tobin J.M. Fungal melanins and their interactions with metals. Enzym. Microb. Technol. 1996;19:311–317. doi: 10.1016/0141-0229(96)00002-6. PubMed DOI
Liu R., Meng X., Mo C., Wei X., Ma A. Melanin of fungi: From classification to application. World J. Microbiol. Biotechnol. 2022;38:228. doi: 10.1007/s11274-022-03415-0. PubMed DOI
García-Rivera J., Casadevall A. Melanization of Cryptococcus neoformans reduces its susceptibility to the antimicrobial effects of silver nitrate. Med. Mycol. 2001;39:353–357. doi: 10.1080/mmy.39.4.353.357. PubMed DOI
Gadd G.M., De Rome L. Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol. 1988;29:610–617. doi: 10.1007/BF00260993. DOI
Berthelot C., Zegeye A., Gaber D.A., Chalot M., Franken P., Kovács G.M., Leyval C., Blaudez D. Unravelling the Role of Melanin in Cd and Zn Tolerance and Accumulation of Three Dark Septate Endophytic Species. Microorganisms. 2020;8:537. doi: 10.3390/microorganisms8040537. PubMed DOI PMC
Oh J.-J., Kim J.Y., Kim Y.J., Kim S., Kim G.-H. Utilization of extracellular fungal melanin as an eco-friendly biosorbent for treatment of metal-contaminated effluents. Chemosphere. 2021;272:129884. doi: 10.1016/j.chemosphere.2021.129884. PubMed DOI
Gadd G.M., editor. Fungi in Biogeochemical Cycles. Cambridge University Press; Cambridge, UK: 2006.
Polák F., Urík M., Bujdoš M., Uhlík P., Matúš P. Evaluation of aluminium mobilization from its soil mineral pools by simultaneous effect of Aspergillus strains’ acidic and chelating exometabolites. J. Inorg. Biochem. 2018;181:162–168. doi: 10.1016/j.jinorgbio.2017.09.006. PubMed DOI
Sayer J.A., Gadd G.M. Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol. Res. 1997;101:653–661. doi: 10.1017/S0953756296003140. DOI
Sazanova K., Osmolovskaya N., Schiparev S., Yakkonen K., Kuchaeva L., Vlasov D. Organic Acids Induce Tolerance to Zinc- and Copper-Exposed Fungi Under Various Growth Conditions. Curr. Microbiol. 2014;70:520–527. doi: 10.1007/s00284-014-0751-0. PubMed DOI
Fomina M., Hillier S., Charnock J.M., Melville K., Alexander I.J., Gadd G.M. Role of Oxalic Acid Overexcretion in Transformations of Toxic Metal Minerals by Beauveria caledonica. Appl. Environ. Microbiol. 2005;71:371–381. doi: 10.1128/AEM.71.1.371-381.2005. PubMed DOI PMC
Ge W., Zamri D., Mineyama H., Valix M. Bioaccumulation of heavy metals on adapted Aspergillus foetidus. Adsorption. 2011;17:901–910. doi: 10.1007/s10450-011-9359-x. DOI
Magyarosy A., Laidlaw R., Kilaas R., Echer C., Clark D., Keasling J. Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Appl. Microbiol. Biotechnol. 2002;59:382–388. doi: 10.1007/s00253-002-1020-x. PubMed DOI
Jarosz-Wilkolazka A., Gadd G.M. Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere. 2003;52:541–547. doi: 10.1016/S0045-6535(03)00235-2. PubMed DOI
Tang J.D., Parker L.A., Perkins A.D., Sonstegard T.S., Schroeder S.G., Nicholas D.D., Diehl S.V. Gene Expression Analysis of Copper Tolerance and Wood Decay in the Brown Rot Fungus Fibroporia radiculosa. Appl. Environ. Microbiol. 2013;79:1523–1533. doi: 10.1128/AEM.02916-12. PubMed DOI PMC
Kumar V., Dwivedi S.K. Mycoremediation of heavy metals: Processes, mechanisms, and affecting factors. Environ. Sci. Pollut. Res. 2021;28:10375–10412. doi: 10.1007/s11356-020-11491-8. PubMed DOI
Goyal N., Jain S., Banerjee U. Comparative studies on the microbial adsorption of heavy metals. Adv. Environ. Res. 2003;7:311–319. doi: 10.1016/S1093-0191(02)00004-7. DOI
Tan T., Cheng P. Biosorption of Metal Ions with Penicillium chrysogenum. Appl. Biochem. Biotechnol. 2003;104:119–128. doi: 10.1385/ABAB:104:2:119. PubMed DOI
Zapotoczny S., Jurkiewicz A., Tylko G., Anielska T., Turnau K. Accumulation of copper by Acremonium pinkertoniae, a fungus isolated from industrial wastes. Microbiol. Res. 2007;162:219–228. doi: 10.1016/j.micres.2006.03.008. PubMed DOI
González-Guerrero M., Melville L.H., Ferrol N., Lott J.N., Azcón-Aguilar C., Peterson R.L. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can. J. Microbiol. 2008;54:103–110. doi: 10.1139/W07-119. PubMed DOI
Wang H.-R., Zhao X.-Y., Zhang J.-M., Lu C., Feng F.-J. Arbuscular mycorrhizal fungus regulates cadmium accumulation, migration, transport, and tolerance in Medicago sativa. J. Hazard. Mater. 2022;435:129077. doi: 10.1016/j.jhazmat.2022.129077. PubMed DOI
Boriová K., Čerňanský S., Matúš P., Bujdoš M., Šimonovičová A. Bioaccumulation and biovolatilization of various elements using filamentous fungus Scopulariopsis brevicaulis. Lett. Appl. Microbiol. 2014;59:217–223. doi: 10.1111/lam.12266. PubMed DOI
Sintuprapa W., Thiravetyan P., Tanticharoen M. A possible mechanism of Zn2+ uptake by living cells of Penicillium sp. Biotechnol. Lett. 2000;22:1709–1712. doi: 10.1023/A:1005688132205. DOI
Lapinskas P.J., Lin S.-J., Culotta V.C. The role of the Saccharomyces cerevisiae CCC1 gene in the homeostasis of manganese ions. Mol. Microbiol. 1996;21:519–528. doi: 10.1111/j.1365-2958.1996.tb02561.x. PubMed DOI
Schmidt K., Wolfe D.M., Stiller B., Pearce D.A. Cd2+, Mn2+, Ni2+ and Se2+ toxicity to Saccharomyces cerevisiae lacking YPK9p the orthologue of human ATP13A2. Biochem. Biophys. Res. Commun. 2009;383:198–202. doi: 10.1016/j.bbrc.2009.03.151. PubMed DOI PMC
Devirgiliis C., Murgia C., Danscher G., Perozzi G. Exchangeable zinc ions transiently accumulate in a vesicular compartment in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 2004;323:58–64. doi: 10.1016/j.bbrc.2004.08.051. PubMed DOI
Barros D., Pradhan A., Pascoal C., Cássio F. Transcriptomics reveals the action mechanisms and cellular targets of citrate-coated silver nanoparticles in a ubiquitous aquatic fungus. Environ. Pollut. 2020;268:115913. doi: 10.1016/j.envpol.2020.115913. PubMed DOI
Sharma K., Giri R., Sharma R. Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora. Lett. Appl. Microbiol. 2020;71:637–644. doi: 10.1111/lam.13372. PubMed DOI
Ruytinx J., Nguyen H., Van Hees M., De Beeck M.O., Vangronsveld J., Carleer R., Colpaert J.V., Adriaensen K. Zinc export results in adaptive zinc tolerance in the ectomycorrhizal basidiomycete Suillus bovinus. Metallomics. 2013;5:1225–1233. doi: 10.1039/c3mt00061c. PubMed DOI
Blaudez D., Botton B., Chalot M. Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology. 2000;146:1109–1117. doi: 10.1099/00221287-146-5-1109. PubMed DOI
Bellion M., Courbot M., Jacob C., Blaudez D., Chalot M., Courbot M. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol. Lett. 2006;254:173–181. doi: 10.1111/j.1574-6968.2005.00044.x. PubMed DOI
Smith A.D., Logeman B.L., Thiele D.J. Copper Acquisition and Utilization in Fungi. Annu. Rev. Microbiol. 2017;71:597–623. doi: 10.1146/annurev-micro-030117-020444. PubMed DOI PMC
Liu X., Jiang Y., He D., Fang X., Xu J., Lee Y.-W., Keller N.P., Shi J. Copper Tolerance Mediated by FgAceA and FgCrpA in Fusarium graminearum. Front. Microbiol. 2020;11:1392. doi: 10.3389/fmicb.2020.01392. PubMed DOI PMC
Mukherjee A., Das D., Mondal S.K., Biswas R., Das T.K., Boujedaini N., Khuda-Bukhsh A.R. Tolerance of arsenate-induced stress in Aspergillus niger, a possible candidate for bioremediation. Ecotoxicol. Environ. Saf. 2010;73:172–182. doi: 10.1016/j.ecoenv.2009.09.015. PubMed DOI
Sharples J.M., Meharg A.A., Chambers S.M., Cairney J.W. Mechanism of Arsenate Resistance in the Ericoid Mycorrhizal Fungus Hymenoscyphus ericae. Plant Physiol. 2000;124:1327–1334. doi: 10.1104/pp.124.3.1327. PubMed DOI PMC
Culotta V.C., Yang M., Hall M.D. Manganese Transport and Trafficking: Lessons Learned from Saccharomyces cerevisiae. Eukaryot. Cell. 2005;4:1159–1165. doi: 10.1128/EC.4.7.1159-1165.2005. PubMed DOI PMC
Farcasanu I.C., Mizunuma M., Hirata D., Miyakawa T. Involvement of histidine permease (Hip1p) in manganese transport in Saccharomyces cerevisiae. Mol. Gen. Genet. 1998;259:541–548. doi: 10.1007/s004380050846. PubMed DOI
Diss L., Blaudez D., Gelhaye E., Chalot M. Genome-wide analysis of fungal manganese transporters, with an emphasis on Phanerochaete chrysosporium. Environ. Microbiol. Rep. 2011;3:367–382. doi: 10.1111/j.1758-2229.2010.00235.x. PubMed DOI
Antsotegi-Uskola M., Markina-Iñarrairaegui A., Ugalde U. Copper Resistance in Aspergillus nidulans Relies on the PI-Type ATPase CrpA, Regulated by the Transcription Factor AceA. Front. Microbiol. 2017;8:912. doi: 10.3389/fmicb.2017.00912. PubMed DOI PMC
Ahmed S., Ahmad M., Swami B.L., Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2015;7:17–28. doi: 10.1016/j.jare.2015.02.007. PubMed DOI PMC
Kharisov B.I., Kharissova O.V., Ortiz-Mendez U., editors. CRC Concise Encyclopedia of Nanotechnology. CRC Press; Boca Raton, FL, USA: 2016.
Shedbalkar U., Singh R., Wadhwani S., Gaidhani S., Chopade B. Microbial synthesis of gold nanoparticles: Current status and future prospects. Adv. Colloid Interface Sci. 2014;209:40–48. doi: 10.1016/j.cis.2013.12.011. PubMed DOI
Konvičková Z., Holišová V., Kolenčík M., Niide T., Kratošová G., Umetsu M., Seidlerová J. Phytosynthesis of colloidal Ag-AgCl nanoparticles mediated by Tilia sp. leachate, evaluation of their behaviour in liquid phase and catalytic properties. Colloid Polym. Sci. 2018;296:677–687. doi: 10.1007/s00396-018-4290-2. DOI
Hiemenz P.C., Rajagopalan R., editors. Principles of Colloid and Surface Chemistry, Revised and Expanded. CRC Press; Boca Raton, FL, USA: 2016.
Ovais M., Khalil A.T., Ayaz M., Ahmad I., Nethi S.K., Mukherjee S. Biosynthesis of Metal Nanoparticles via Microbial Enzymes: A Mechanistic Approach. Int. J. Mol. Sci. 2018;19:4100. doi: 10.3390/ijms19124100. PubMed DOI PMC
Patra C.R., Mukherjee S., Kotcherlakota R. Biosynthesized Silver Nanoparticles: A Step Forward for Cancer Theranostics? Nanomedicine. 2014;9:1445–1448. doi: 10.2217/nnm.14.89. PubMed DOI
Gholami-Shabani M., Akbarzadeh A., Norouzian D., Amini A., Gholami-Shabani Z., Imani A., Chiani M., Riazi G., Shams-Ghahfarokhi M., Razzaghi-Abyaneh M. Antimicrobial Activity and Physical Characterization of Silver Nanoparticles Green Synthesized Using Nitrate Reductase from Fusarium oxysporum. Appl. Biochem. Biotechnol. 2014;172:4084–4098. doi: 10.1007/s12010-014-0809-2. PubMed DOI
Kumari R., Barsainya M., Singh D.P. Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa. Environ. Sci. Pollut. Res. 2016;24:4645–4654. doi: 10.1007/s11356-016-8170-3. PubMed DOI
Khan N.T., Khan M.J., Jameel J., Jameel N., Rheman S.U.A. An Overview: Biological Organisms That Serves as Nanofactories for Metallic Nanoparticles Synthesis and Fungi Being the Most Appropriate. Bioceram. Dev. Appl. 2017;7 doi: 10.4172/2090-5025.1000101. DOI
Seshadri S., Saranya K., Kowshik M. Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol. Prog. 2011;27:1464–1469. doi: 10.1002/btpr.651. PubMed DOI
Ahmad A., Mukherjee P., Senapati S., Mandal D., Khan M.I., Kumar R., Sastry M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces. 2003;28:313–318. doi: 10.1016/S0927-7765(02)00174-1. DOI
Elamawi R.M., Al-Harbi R.E., Hendi A.A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biol. Pest Control. 2018;28:28. doi: 10.1186/s41938-018-0028-1. DOI
Gudikandula K., Vadapally P., Charya M.S. Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies. OpenNano. 2017;2:64–78. doi: 10.1016/j.onano.2017.07.002. DOI
Metuku R.P., Pabba S., Burra S., Hima Bindu N., SV SS S.L., Gudikandula K., Charya S. Biosynthesis of silver nanoparticles from Schizophyllum radiatum HE 863742.1: Their characterization and antimicrobial activity. 3 Biotech. 2013;4:227–234. doi: 10.1007/s13205-013-0138-0. PubMed DOI PMC
Rajput S., Werezuk R., Lange R.M., McDermott M.T. Fungal Isolate Optimized for Biogenesis of Silver Nanoparticles with Enhanced Colloidal Stability. Langmuir. 2016;32:8688–8697. doi: 10.1021/acs.langmuir.6b01813. PubMed DOI
Kitching M., Choudhary P., Inguva S., Guo Y., Ramani M., Das S.K., Marsili E. Fungal surface protein mediated one-pot synthesis of stable and hemocompatible gold nanoparticles. Enzym. Microb. Technol. 2016;95:76–84. doi: 10.1016/j.enzmictec.2016.08.007. PubMed DOI
Suryavanshi P., Pandit R., Gade A., Derita M., Zachino S., Rai M. Colletotrichum sp.- mediated synthesis of sulphur and aluminium oxide nanoparticles and its in vitro activity against selected food-borne pathogens. LWT Food Sci. Technol. 2017;81:188–194. doi: 10.1016/j.lwt.2017.03.038. DOI
Ottoni C.A., Simões M.F., Fernandes S., dos Santos J.G., da Silva E.S., de Souza R.F.B., Maiorano A.E. Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express. 2017;7:31. doi: 10.1186/s13568-017-0332-2. PubMed DOI PMC
Ma L., Su W., Liu J.-X., Zeng X.-X., Huang Z., Li W., Liu Z.-C., Tang J.-X. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. Mater. Sci. Eng. C. 2017;77:963–971. doi: 10.1016/j.msec.2017.03.294. PubMed DOI
Azmath P., Baker S., Rakshith D., Satish S. Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm. J. 2016;24:140–146. doi: 10.1016/j.jsps.2015.01.008. PubMed DOI PMC
AbdelRahim K., Mahmoud S.Y., Ali A.M., Almaary K.S., Mustafa A.E.-Z.M., Husseiny S.M. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J. Biol. Sci. 2017;24:208–216. doi: 10.1016/j.sjbs.2016.02.025. PubMed DOI PMC
Shahzad A., Saeed H., Iqtedar M., Hussain S.Z., Kaleem A., Abdullah R., Sharif S., Naz S., Saleem F., Aihetasham A., et al. Size-Controlled Production of Silver Nanoparticles by Aspergillus fumigatus BTCB10: Likely Antibacterial and Cytotoxic Effects. J. Nanomater. 2019;2019:5168698. doi: 10.1155/2019/5168698. DOI
Husseiny S.M., Salah T.A., Anter H.A. Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef Univ. J. Basic Appl. Sci. 2015;4:225–231. doi: 10.1016/j.bjbas.2015.07.004. DOI
Birla S.S., Gaikwad S.C., Gade A.K., Rai M.K. Rapid Synthesis of Silver Nanoparticles from Fusarium oxysporum by Optimizing Physicocultural Conditions. Sci. World J. 2013;2013:796018. doi: 10.1155/2013/796018. PubMed DOI PMC
Sreedharan S.M., Gupta S., Saxena A.K., Singh R. Macrophomina phaseolina: Microbased biorefinery for gold nanoparticle production. Ann. Microbiol. 2019;69:435–445. doi: 10.1007/s13213-018-1434-z. DOI
Azam Z., Ayaz A., Younas M., Qureshi Z., Arshad B., Zaman W., Ullah F., Nasar M.Q., Bahadur S., Irfan M.M., et al. Microbial synthesized cadmium oxide nanoparticles induce oxidative stress and protein leakage in bacterial cells. Microb. Pathog. 2020;144:104188. doi: 10.1016/j.micpath.2020.104188. PubMed DOI
Borovaya M., Pirko Y., Krupodorova T., Naumenko A., Blume Y., Yemets A. Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.) P. Kumm. Biotechnol. Biotechnol. Equip. 2015;29:1156–1163. doi: 10.1080/13102818.2015.1064264. DOI
Vijayanandan A.S., Balakrishnan R.M. Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans. J. Environ. Manag. 2018;218:442–450. doi: 10.1016/j.jenvman.2018.04.032. PubMed DOI
Saravanakumar K., Shanmugam S., Varukattu N.B., MubarakAli D., Kathiresan K., Wang M.-H. Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. J. Photochem. Photobiol. B Biol. 2019;190:103–109. doi: 10.1016/j.jphotobiol.2018.11.017. PubMed DOI
Chatterjee S., Mahanty S., Das P., Chaudhuri P., Das S. Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr(VI) from aqueous solution. Chem. Eng. J. 2019;385:123790. doi: 10.1016/j.cej.2019.123790. DOI
Salvadori M.R., Nascimento C.A.O., Corrêa B. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus. Sci. Rep. 2014;4:6404. doi: 10.1038/srep06404. PubMed DOI PMC
Diko C.S., Qu Y., Henglin Z., Li Z., Nahyoon N.A., Fan S. Biosynthesis and characterization of lead selenide semiconductor nanoparticles (PbSe NPs) and its antioxidant and photocatalytic activity. Arab. J. Chem. 2020;13:8411–8423. doi: 10.1016/j.arabjc.2020.06.005. DOI
Tarver S., Gray D., Loponov K., Das D.B., Sun T., Sotenko M. Biomineralization of Pd nanoparticles using Phanerochaete chrysosporium as a sustainable approach to turn platinum group metals (PGMs) wastes into catalysts. Int. Biodeterior. Biodegrad. 2019;143:104724. doi: 10.1016/j.ibiod.2019.104724. DOI
Rajakumar G., Rahuman A.A., Roopan S.M., Khanna V.G., Elango G., Kamaraj C., Zahir A.A., Velayutham K. Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012;91:23–29. doi: 10.1016/j.saa.2012.01.011. PubMed DOI
Nayak R.R., Pradhan N., Behera D., Pradhan K.M., Mishra S., Sukla L.B., Mishra B.K. Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: The process and optimization. J. Nanoparticle Res. 2011;13:3129–3137. doi: 10.1007/s11051-010-0208-8. DOI
Du L., Xu Q., Huang M., Xian L., Feng J.-X. Synthesis of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue. Mater. Chem. Phys. 2015;160:40–47. doi: 10.1016/j.matchemphys.2015.04.003. DOI
Gurunathan S., Kalishwaralal K., Vaidyanathan R., Venkataraman D., Pandian S.R.K., Muniyandi J., Hariharan N., Eom S.H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surfaces B Biointerfaces. 2009;74:328–335. doi: 10.1016/j.colsurfb.2009.07.048. PubMed DOI
Balakumaran M., Ramachandran R., Kalaichelvan P. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol. Res. 2015;178:9–17. doi: 10.1016/j.micres.2015.05.009. PubMed DOI
Silva L.P.C., Oliveira J.P., Keijok W.J., da Silva A.R., Aguiar A.R., Guimarães M.C.C., Ferraz C.M., Araújo J.V., Tobias F.L., Braga F.R. Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans. Int. J. Nanomed. 2017;12:6373–6381. doi: 10.2147/IJN.S137703. PubMed DOI PMC
Saxena J., Sharma P.K., Sharma M.M., Singh A. Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties. SpringerPlus. 2016;5:861. doi: 10.1186/s40064-016-2558-x. PubMed DOI PMC
Rose G.K., Soni R., Rishi P., Soni S.K. Optimization of the biological synthesis of silver nanoparticles using Penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens. Green Process. Synth. 2019;8:144–156. doi: 10.1515/gps-2018-0042. DOI
Xue B., He D., Gao S., Wang D., Yokoyama K., Wang L. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int. J. Nanomed. 2016;11:1899–1906. doi: 10.2147/IJN.S98339. PubMed DOI PMC
Phanjom P., Ahmed G. Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae(MTCC No. 1846) and their antibacterial effect. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017;8:045016. doi: 10.1088/2043-6254/aa92bc. DOI
Nasr M. Nanotechnology Application in Agricultural Sector. In: Prasad R., Kumar V., Kumar M., Choudhary D., editors. Nanobiotechnology in Bioformulations. Springer International Publishing; Cham, Switzerland: 2019. pp. 317–329.
Wu Z., Yang S., Wu W. Shape control of inorganic nanoparticles from solution. Nanoscale. 2015;8:1237–1259. doi: 10.1039/C5NR07681A. PubMed DOI
Gahukar R.T., Das R.K. Plant-derived nanopesticides for agricultural pest control: Challenges and prospects. Nanotechnol. Environ. Eng. 2020;5:3. doi: 10.1007/s41204-020-0066-2. DOI
Gade A.K., Bonde P., Ingle A.P., Marcato P.D., Durán N., Rai M.K. Exploitation of Aspergillus niger for Synthesis of Silver Nanoparticles. J. Biobased Mater. Bioenergy. 2008;2:243–247. doi: 10.1166/jbmb.2008.401. DOI
Jian W., Zhang L., Siu K.-C., Song A., Wu J.-Y. Formation and Physiochemical Properties of Silver Nanoparticles with Various Exopolysaccharides of a Medicinal Fungus in Aqueous Solution. Molecules. 2016;22:50. doi: 10.3390/molecules22010050. PubMed DOI PMC
Bharde A., Rautaray D., Bansal V., Ahmad A., Sarkar I., Yusuf S.M., Sanyal M., Sastry M. Extracellular Biosynthesis of Magnetite using Fungi. Small. 2006;2:135–141. doi: 10.1002/smll.200500180. PubMed DOI
Kumar S.A., Ansary A.A., Ahmad A., Khan M.I. Extracellular Biosynthesis of CdSe Quantum Dots by the Fungus, Fusarium Oxysporum. J. Biomed. Nanotechnol. 2007;3:190–194. doi: 10.1166/jbn.2007.027. DOI
Sanghi R., Verma P., Puri S. Enzymatic Formation of Gold Nanoparticles Using Phanerochaete Chrysosporium. Adv. Chem. Eng. Sci. 2011;1:154–162. doi: 10.4236/aces.2011.13023. DOI
Philip D. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009;73:374–381. doi: 10.1016/j.saa.2009.02.037. PubMed DOI
Maruyama T., Fujimoto Y., Maekawa T. Synthesis of gold nanoparticles using various amino acids. J. Colloid Interface Sci. 2015;447:254–257. doi: 10.1016/j.jcis.2014.12.046. PubMed DOI
Polavarapu L., Xu Q.-H. A single-step synthesis of gold nanochains using an amino acid as a capping agent and characterization of their optical properties. Nanotechnology. 2008;19:075601. doi: 10.1088/0957-4484/19/7/075601. PubMed DOI
Liu F.-K., Ko F.-H., Huang P.-W., Wu C.-H., Chu T.-C. Studying the size/shape separation and optical properties of silver nanoparticles by capillary electrophoresis. J. Chromatogr. A. 2004;1062:139–145. doi: 10.1016/j.chroma.2004.11.010. PubMed DOI
Zhao Y., Tian Y., Cui Y., Liu W., Ma W., Jiang X. Small Molecule-Capped Gold Nanoparticles as Potent Antibacterial Agents That Target Gram-Negative Bacteria. J. Am. Chem. Soc. 2010;132:12349–12356. doi: 10.1021/ja1028843. PubMed DOI
Duan H., Wang D., Li Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015;44:5778–5792. doi: 10.1039/C4CS00363B. PubMed DOI
Boury B., Plumejeau S. Metal oxides and polysaccharides: An efficient hybrid association for materials chemistry. Green Chem. 2014;17:72–88. doi: 10.1039/C4GC00957F. DOI
Pochanavanich P., Suntornsuk W. Fungal chitosan production and its characterization. Lett. Appl. Microbiol. 2002;35:17–21. doi: 10.1046/j.1472-765X.2002.01118.x. PubMed DOI
Walczak K., Schierz G., Basche S., Petto C., Boening K., Wieckiewicz M. Antifungal and Surface Properties of Chitosan-Salts Modified PMMA Denture Base Material. Molecules. 2020;25:5899. doi: 10.3390/molecules25245899. PubMed DOI PMC
Paradowska-Stolarz A., Wieckiewicz M., Owczarek A., Wezgowiec J. Natural Polymers for the Maintenance of Oral Health: Review of Recent Advances and Perspectives. Int. J. Mol. Sci. 2021;22:10337. doi: 10.3390/ijms221910337. PubMed DOI PMC
Lopez-Moya F., Suarez-Fernandez M., Lopez-Llorca L.V. Molecular Mechanisms of Chitosan Interactions with Fungi and Plants. Int. J. Mol. Sci. 2019;20:332. doi: 10.3390/ijms20020332. PubMed DOI PMC
Frank L.A., Onzi G.R., Morawski A.S., Pohlmann A.R., Guterres S.S., Contri R.V. Chitosan as a coating material for nanoparticles intended for biomedical applications. React. Funct. Polym. 2019;147:104459. doi: 10.1016/j.reactfunctpolym.2019.104459. DOI
Virkutyte J., Varma R.S. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. 2011;2:837–846. doi: 10.1039/C0SC00338G. DOI
Cheng F., Betts J.W., Kelly S.M., Schaller J., Heinze T. Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using aminocellulose as a combined reducing and capping reagent. Green Chem. 2013;15:989–998. doi: 10.1039/c3gc36831a. DOI
Kumar S.A., Abyaneh M.K., Gosavi S.W., Kulkarni S.K., Pasricha R., Ahmad A., Khan M.I. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett. 2007;29:439–445. doi: 10.1007/s10529-006-9256-7. PubMed DOI
Bhainsa K.C., D’Souza S. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surfaces B Biointerfaces. 2006;47:160–164. doi: 10.1016/j.colsurfb.2005.11.026. PubMed DOI
Shaligram N.S., Bule M., Bhambure R., Singhal R.S., Singh S.K., Szakacs G., Pandey A. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem. 2009;44:939–943. doi: 10.1016/j.procbio.2009.04.009. DOI
Balaji D., Basavaraja S., Deshpande R., Mahesh D.B., Prabhakar B., Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surfaces B Biointerfaces. 2009;68:88–92. doi: 10.1016/j.colsurfb.2008.09.022. PubMed DOI
Ingle A., Rai M., Gade A., Bawaskar M. Fusarium solani: A novel biological agent for the extracellular synthesis of silver nanoparticles. J. Nanopart. Res. 2009;11:2079–2085. doi: 10.1007/s11051-008-9573-y. DOI
Dauthal P., Mukhopadhyay M. Noble Metal Nanoparticles: Plant-Mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications. Ind. Eng. Chem. Res. 2016;55:9557–9577. doi: 10.1021/acs.iecr.6b00861. DOI
Cameron S.J., Sheng J., Hosseinian F., Willmore W.G. Nanoparticle Effects on Stress Response Pathways and Nanoparticle–Protein Interactions. Int. J. Mol. Sci. 2022;23:7962. doi: 10.3390/ijms23147962. PubMed DOI PMC
Sumanth B., Lakshmeesha T.R., Ansari M.A., A Alzohairy M., Udayashankar A.C., Shobha B., Niranjana S.R., Srinivas C., Almatroudi A. Mycogenic Synthesis of Extracellular Zinc Oxide Nanoparticles from Xylaria acuta and Its Nanoantibiotic Potential. Int. J. Nanomed. 2020;15:8519–8536. doi: 10.2147/IJN.S271743. PubMed DOI PMC
Mahapatra S., Banerjee D. Fungal Exopolysaccharide: Production, Composition and Applications. Microbiol. Insights. 2013;6:MBI.S10957-16. doi: 10.4137/MBI.S10957. PubMed DOI PMC
Banerjee A., Halder U., Bandopadhyay R. Preparations and Applications of Polysaccharide Based Green Synthesized Metal Nanoparticles: A State-of-the-Art. J. Clust. Sci. 2017;28:1803–1813. doi: 10.1007/s10876-017-1219-8. DOI
Emam H.E., Ahmed H.B. Polysaccharides templates for assembly of nanosilver. Carbohydr. Polym. 2016;135:300–307. doi: 10.1016/j.carbpol.2015.08.095. PubMed DOI
Mohamed A.A., Fouda A., Abdel-Rahman M.A., Hassan S.E.-D., El-Gamal M.S., Salem S.S., Shaheen T.I. Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatal. Agric. Biotechnol. 2019;19:101103. doi: 10.1016/j.bcab.2019.101103. DOI
Dhanjal D.S., Mehra P., Bhardwaj S., Singh R., Sharma P., Nepovimova E., Chopra C., Kuca K. Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology. Int. J. Nanomed. 2022;17:2505–2533. doi: 10.2147/IJN.S363282. PubMed DOI PMC
Gahlawat G., Choudhury A.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019;9:12944–12967. doi: 10.1039/C8RA10483B. PubMed DOI PMC
Loshchinina E.A., Vetchinkina E.P., Kupryashina M.A., Kursky V.F., Nikitina V.E. Nanoparticles synthesis by Agaricus soil basidiomycetes. J. Biosci. Bioeng. 2018;126:44–52. doi: 10.1016/j.jbiosc.2018.02.002. PubMed DOI
Vetchinkina E., Loshchinina E., Kupryashina M., Burov A., Pylaev T., Nikitina V. Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes. PeerJ. 2018;6:e5237. doi: 10.7717/peerj.5237. PubMed DOI PMC