Mycosynthesis of Metal-Containing Nanoparticles-Fungal Metal Resistance and Mechanisms of Synthesis

. 2022 Nov 15 ; 23 (22) : . [epub] 20221115

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36430561

Grantová podpora
VEGA 1/0175/22 Scientific Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences (Vedecká grantová agentúra MŠVVaŠ SR a SAV)
SP2022/8 The Project for Specific University Research (SGS), Faculty of Mining and Geology of VSB - Technical University of Ostrava
04-GASPU-2021 Grant Agency of the Slovak University of Agriculture in Nitra
Ramanujan fellowship Science and Engineering Research Board

In the 21st century, nanomaterials play an increasingly important role in our lives with applications in many sectors, including agriculture, biomedicine, and biosensors. Over the last two decades, extensive research has been conducted to find ways to synthesise nanoparticles (NPs) via mediation with fungi or fungal extracts. Mycosynthesis can potentially be an energy-efficient, highly adjustable, environmentally benign alternative to conventional physico-chemical procedures. This review investigates the role of metal toxicity in fungi on cell growth and biochemical levels, and how their strategies of resistance, i.e., metal chelation, biomineral formation, biosorption, bioaccumulation, compartmentalisation, and efflux of metals from cells, contribute to the synthesis of metal-containing NPs used in different applications, e.g., biomedical, antimicrobial, catalytic, biosensing, and precision agriculture. The role of different synthesis conditions, including that of fungal biomolecules serving as nucleation centres or templates for NP synthesis, reducing agents, or capping agents in the synthesis process, is also discussed. The authors believe that future studies need to focus on the mechanism of NP synthesis, as well as on the influence of such conditions as pH, temperature, biomass, the concentration of the precursors, and volume of the fungal extracts on the efficiency of the mycosynthesis of NPs.

Zobrazit více v PubMed

Alavi M., Nokhodchi A. Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discov. Today. 2021;26:1953–1962. doi: 10.1016/j.drudis.2021.03.030. PubMed DOI

Kolenčík M., Ernst D., Urík M., Ďurišová Ľ., Bujdoš M., Šebesta M., Dobročka E., Kšiňan S., Illa R., Yu Q., et al. Foliar Application of Low Concentrations of Titanium Dioxide and Zinc Oxide Nanoparticles to the Common Sunflower under Field Conditions. Nanomaterials. 2020;10:1619. doi: 10.3390/nano10081619. PubMed DOI PMC

Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Ďurišová Ľ., Bujdoš M., Černý I., Chlpík J., Juriga M., et al. Effects of Foliar Application of ZnO Nanoparticles on Lentil Production, Stress Level and Nutritional Seed Quality under Field Conditions. Nanomaterials. 2022;12:310. doi: 10.3390/nano12030310. PubMed DOI PMC

Ndlovu N., Tatenda M., Clemence M., Munyengwa N. Nanotechnology Applications in Crop Production and Food Systems. Int. J. Plant Breed. Crop Sci. 2020;7:603–613.

Abd-Elsalam K.A., editor. Fungal Cell Factories for Sustainable Nanomaterials Productions and Agricultural Applications. Elsevier; Amsterdam, The Netherlands: 2022.

Wu X., Chen G., Shen J., Li Z., Zhang Y., Han G. Upconversion Nanoparticles: A Versatile Solution to Multiscale Biological Imaging. Bioconjugate Chem. 2015;26:166–175. doi: 10.1021/bc5003967. PubMed DOI PMC

Holišová V., Urban M., Kolenčík M., Němcová Y., Schröfel A., Peikertová P., Slabotinský J., Kratošová G. Biosilica-nanogold composite: Easy-to-prepare catalyst for soman degradation. Arab. J. Chem. 2019;12:262–271. doi: 10.1016/j.arabjc.2017.08.003. DOI

Holišová V., Urban M., Konvičková Z., Kolenčík M., Mančík P., Slabotinský J., Kratošová G., Plachá D. Colloidal stability of phytosynthesised gold nanoparticles and their catalytic effects for nerve agent degradation. Sci. Rep. 2021;11:4071. doi: 10.1038/s41598-021-83460-1. PubMed DOI PMC

Bala R., Kalia A., Dhaliwal S.S. Evaluation of Efficacy of ZnO Nanoparticles as Remedial Zinc Nanofertilizer for Rice. J. Soil Sci. Plant Nutr. 2019;19:379–389. doi: 10.1007/s42729-019-00040-z. DOI

Pištora J., Vlček J., Lesňák M., Blažek D., Kolenčík M. Optical Methods in Diagnostics of Nanostructured Materials. 1st ed. Akademické nakladatelství CERM; Brno, Czech Republic: 2015.

Illa R., Ješko R., Silber R., Životský O., Kutláková K.M., Matějová L., Kolenčík M., Pištora J., Hamrle J. Structural, magnetic, optical, and magneto-optical properties of CoFe2O4 thin films fabricated by a chemical approach. Mater. Res. Bull. 2019;117:96–102. doi: 10.1016/j.materresbull.2019.05.002. DOI

Weir A., Westerhoff P., Fabricius L., Hristovski K., von Goetz N. Titanium Dioxide Nanoparticles in Food and Personal Care Products. Environ. Sci. Technol. 2012;46:2242–2250. doi: 10.1021/es204168d. PubMed DOI PMC

Konvičková Z., Schröfel A., Kolenčík M., Dědková K., Peikertová P., Žídek M., Seidlerová J., Kratošová G. Antimicrobial bionanocomposite–from precursors to the functional material in one simple step. J. Nanoparticle Res. 2016;18:368. doi: 10.1007/s11051-016-3664-y. DOI

Jamkhande P.G., Ghule N.W., Bamer A.H., Kalaskar M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019;53:101174. doi: 10.1016/j.jddst.2019.101174. DOI

Dhillon G.S., Brar S.K., Kaur S., Verma M. Green approach for nanoparticle biosynthesis by fungi: Current trends and applications. Crit. Rev. Biotechnol. 2011;32:49–73. doi: 10.3109/07388551.2010.550568. PubMed DOI

Horváthová H., Dercová K., Tlčíková M., Hurbanová M. Biological Synthesis of Nanoparticles: Iron-based Plant Bionanoparticles and Their Use for Remediation of the Contaminated Environment. Chem. Listy. 2022;116:405–415. doi: 10.54779/chl20220405. DOI

Sastry M., Ahmad A., Khan M.I. Biosynthesis of Metal Nanoparticles Using Fungi and Actinomycete. Curr. Sci. 2003;85:162–170.

Salem S.S., Fouda A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Element Res. 2021;199:344–370. doi: 10.1007/s12011-020-02138-3. PubMed DOI

Yadav A., Kon K., Kratošová G., Durán N., Ingle A.P., Rai M. Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: Progress and key aspects of research. Biotechnol. Lett. 2015;37:2099–2120. doi: 10.1007/s10529-015-1901-6. PubMed DOI

Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S.R., Khan M.I., Parishcha R., Ajaykumar P.V., Alam M., Kumar R., et al. Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Lett. 2001;1:515–519. doi: 10.1021/nl0155274. DOI

Šebesta M., Urík M., Bujdoš M., Kolenčík M., Vávra I., Dobročka E., Kim H., Matúš P. Fungus Aspergillus niger Processes Exogenous Zinc Nanoparticles into a Biogenic Oxalate Mineral. J. Fungi. 2020;6:210. doi: 10.3390/jof6040210. PubMed DOI PMC

Gadd G.M. Mycotransformation of organic and inorganic substrates. Mycologist. 1999;18:60–70. doi: 10.1017/S0269915X04002022. DOI

Kang X., Csetenyi L., Gadd G.M. Colonization and bioweathering of monazite by Aspergillus niger: Solubilization and precipitation of rare earth elements. Environ. Microbiol. 2021;23:3970–3986. doi: 10.1111/1462-2920.15402. PubMed DOI

Kolenčík M., Urík M., Štubna J. Heterotrophic Leaching and Its Application in Biohydrometallurgy. Chem. Listy. 2014;108:1040–1045.

Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S.R., Khan M.I., Ramani R., Pasricha R., Ajayakumar P.V., Alam M., et al. Bioreduction of AuCl4−Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed. Angew. Chem. Int. Ed. 2001;40:3585–3588. doi: 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K. PubMed DOI

Priyadarshini E., Priyadarshini S.S., Cousins B.G., Pradhan N. Metal-Fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere. 2021;274:129976. doi: 10.1016/j.chemosphere.2021.129976. PubMed DOI

Santos T., Silva T., Cardoso J., Albuquerque-Júnior R., Zielinska A., Souto E., Severino P., Mendonça M. Biosynthesis of Silver Nanoparticles Mediated by Entomopathogenic Fungi: Antimicrobial Resistance, Nanopesticides, and Toxicity. Antibiotics. 2021;10:852. doi: 10.3390/antibiotics10070852. PubMed DOI PMC

Mousa S.A., El-Sayed E.-S.R., Mohamed S.S., El-Seoud M.A.A., Elmehlawy A.A., Abdou D.A.M. Novel mycosynthesis of Co3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles by the endophytic Aspergillus terreus and evaluation of their antioxidant and antimicrobial activities. Appl. Microbiol. Biotechnol. 2021;105:741–753. doi: 10.1007/s00253-020-11046-4. PubMed DOI

Mukherjee P., Senapati S., Mandal D., Ahmad A., Khan M.I., Kumar R., Sastry M. Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium oxysporum. ChemBioChem. 2002;3:461–463. doi: 10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X. PubMed DOI

Durán N., Marcato P.D., Alves O.L., De Souza G.I.H., Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 2005;3:8. doi: 10.1186/1477-3155-3-8. PubMed DOI PMC

Molnár Z., Bódai V., Szakacs G., Erdélyi B., Fogarassy Z., Sáfrán G., Varga T., Kónya Z., Tóth-Szeles E., Szűcs R., et al. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci. Rep. 2018;8:3943. doi: 10.1038/s41598-018-22112-3. PubMed DOI PMC

Saratale R.G., Karuppusamy I., Saratale G.D., Pugazhendhi A., Kumar G., Park Y., Ghodake G.S., Bharagava R.N., Banu J.R., Shin H.S. A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids Surf. B Biointerfaces. 2018;170:20–35. doi: 10.1016/j.colsurfb.2018.05.045. PubMed DOI

Sood R., Chopra D.S. Metal–plant frameworks in nanotechnology: An overview. Phytomedicine. 2017;50:148–156. doi: 10.1016/j.phymed.2017.08.025. PubMed DOI

Hariram M., Vivekanandhan S. Phytochemical Process for the Functionalization of Materials with Metal Nanoparticles: Current Trends and Future Perspectives. ChemistrySelect. 2018;3:13561–13585. doi: 10.1002/slct.201802748. DOI

Priyadarshini E., Priyadarshini S.S., Pradhan N. Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Appl. Microbiol. Biotechnol. 2019;103:3297–3316. doi: 10.1007/s00253-019-09685-3. PubMed DOI

Ali J., Ali N., Wang L., Waseem H., Pan G. Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J. Microbiol. Methods. 2019;159:18–25. doi: 10.1016/j.mimet.2019.02.010. PubMed DOI

Saxena P. Harish Phyco-Nanotechnology: New Horizons of Gold Nano-Factories. Proc. Natl. Acad. Sci. India Sect. B Boil. Sci. 2016;89:1–11. doi: 10.1007/s40011-016-0813-0. DOI

Saw P.E., Lee S., Jon S. Naturally Occurring Bioactive Compound-Derived Nanoparticles for Biomedical Applications. Adv. Ther. 2019;2:1800146. doi: 10.1002/adtp.201800146. DOI

An overview on the green synthesis of nanoparticles and other nano-materials using enzymes and their potential applications. Biointerface Res. Appl. Chem. 2019;9:4255–4271. doi: 10.33263/BRIAC95.255271. DOI

El Shafey A.M. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Process. Synth. 2020;9:304–339. doi: 10.1515/gps-2020-0031. DOI

Aboyewa J.A., Sibuyi N.R.S., Meyer M., Oguntibeju O.O. Green Synthesis of Metallic Nanoparticles Using Some Selected Medicinal Plants from Southern Africa and Their Biological Applications. Plants. 2021;10:1929. doi: 10.3390/plants10091929. PubMed DOI PMC

Huston M., DeBella M., DiBella M., Gupta A. Green Synthesis of Nanomaterials. Nanomaterials. 2021;11:2130. doi: 10.3390/nano11082130. PubMed DOI PMC

Kumar J.A., Krithiga T., Manigandan S., Sathish S., Renita A.A., Prakash P., Prasad B.N., Kumar T.P., Rajasimman M., Hosseini-Bandegharaei A., et al. A focus to green synthesis of metal/metal based oxide nanoparticles: Various mechanisms and applications towards ecological approach. J. Clean. Prod. 2021;324:129198. doi: 10.1016/j.jclepro.2021.129198. DOI

Berta L., Coman N.-A., Rusu A., Tanase C. A Review on Plant-Mediated Synthesis of Bimetallic Nanoparticles, Characterisation and Their Biological Applications. Materials. 2021;14:7677. doi: 10.3390/ma14247677. PubMed DOI PMC

Roy A., Elzaki A., Tirth V., Kajoak S., Osman H., Algahtani A., Islam S., Faizo N.L., Khandaker M.U., Islam M.N., et al. Biological Synthesis of Nanocatalysts and Their Applications. Catalysts. 2021;11:1494. doi: 10.3390/catal11121494. DOI

Agrawal K., Gupta V.K., Verma P. Microbial cell factories a new dimension in bio-nanotechnology: Exploring the robustness of nature. Crit. Rev. Microbiol. 2021;48:397–427. doi: 10.1080/1040841X.2021.1977779. PubMed DOI

Sharma D., Kanchi S., Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab. J. Chem. 2019;12:3576–3600. doi: 10.1016/j.arabjc.2015.11.002. DOI

Rather A.H., Wani T.U., Khan R.S., Abdal-Hay A., Rather S.-U., Macossay J., Sheikh F.A. Recent progress in the green fabrication of cadmium sulfide and cadmium oxide nanoparticles: Synthesis, antimicrobial and cytotoxic studies. Mater. Sci. Eng. B. 2022;286:116022. doi: 10.1016/j.mseb.2022.116022. DOI

Vargas G., Cypriano J., Correa T., Leão P., Bazylinski D.A., Abreu F. Applications of Magnetotactic Bacteria, Magnetosomes and Magnetosome Crystals in Biotechnology and Nanotechnology: Mini-Review. Molecules. 2018;23:2438. doi: 10.3390/molecules23102438. PubMed DOI PMC

Mousavi S.M., Hashemi S.A., Ghasemi Y., Atapour A., Amani A.M., Savar Dashtaki A., Babapoor A., Arjmand O. Green synthesis of silver nanoparticles toward bio and medical applications: Review study. Artif. Cells Nanomed. Biotechnol. 2018;46:S855–S872. doi: 10.1080/21691401.2018.1517769. PubMed DOI

Timoszyk A. A review of the biological synthesis of gold nanoparticles using fruit extracts: Scientific potential and application. Bull. Mater. Sci. 2018;41:154. doi: 10.1007/s12034-018-1673-4. DOI

Khatoon U.T., Mantravadi K.M., Rao G.V.S.N. Strategies to synthesise copper oxide nanoparticles and their bio applications—A review. Mater. Sci. Technol. 2018;34:2214–2222. doi: 10.1080/02670836.2018.1482600. DOI

Waghmode M.S., Gunjal A.B., Mulla J.A., Patil N.N., Nawani N.N. Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation. SN Appl. Sci. 2019;1:310. doi: 10.1007/s42452-019-0337-3. DOI

Rahman S., Rahman L., Khalil A.T., Ali N., Zia D., Ali M., Shinwari Z.K. Endophyte-mediated synthesis of silver nanoparticles and their biological applications. Appl. Microbiol. Biotechnol. 2019;103:2551–2569. doi: 10.1007/s00253-019-09661-x. PubMed DOI

Puja P., Kumar P. A perspective on biogenic synthesis of platinum nanoparticles and their biomedical applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018;211:94–99. doi: 10.1016/j.saa.2018.11.047. PubMed DOI

Yusof H.M., Mohamad R., Zaidan U.H., Rahman N.A.A. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. J. Anim. Sci. Biotechnol. 2019;10:57. doi: 10.1186/s40104-019-0368-z. PubMed DOI PMC

Jayaprakash M., Kannappan S. An overview of a sustainable approach to the biosynthesis of AgNPs for electrochemical sensors. Arab. J. Chem. 2022;15:104324. doi: 10.1016/j.arabjc.2022.104324. DOI

Singh J., Dutta T., Kim K.-H., Rawat M., Samddar P., Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018;16:84. doi: 10.1186/s12951-018-0408-4. PubMed DOI PMC

Hembram K.C., Kumar R., Kandha L., Parhi P., Kundu C.N., Bindhani B.K. Therapeutic prospective of plant-induced silver nanoparticles: Application as antimicrobial and anticancer agent. Artif. Cells Nanomed. Biotechnol. 2018;46:S38–S51. doi: 10.1080/21691401.2018.1489262. PubMed DOI

Nandhini N., Rajeshkumar S., Mythili S. The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation. Biocatal. Agric. Biotechnol. 2019;19:101138. doi: 10.1016/j.bcab.2019.101138. DOI

Andra S., Balu S.K., Jeevanandham J., Muthalagu M., Vidyavathy M., Chan Y.S., Danquah M.K. Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2019;392:755–771. doi: 10.1007/s00210-019-01666-7. PubMed DOI

Gebre S.H., Sendeku M.G. New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: An overview. SN Appl. Sci. 2019;1:928. doi: 10.1007/s42452-019-0931-4. DOI

Castillo-Henriquez L., Alfaro-Aguilar K., Ugalde-Alvarez J., Vega-Fernandez L., Montes de Oca-Vasquez G., Vega-Baudrit J.R. Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. Nanomaterials. 2020;10:1763. doi: 10.3390/nano10091763. PubMed DOI PMC

Zare E.N., Padil V.V., Mokhtari B., Venkateshaiah A., Wacławek S., Černík M., Tay F.R., Varma R.S., Makvandi P. Advances in biogenically synthesized shaped metal- and carbon-based nanoarchitectures and their medicinal applications. Adv. Colloid Interface Sci. 2020;283:102236. doi: 10.1016/j.cis.2020.102236. PubMed DOI

Uzair B., Liaqat A., Iqbal H., Menaa B., Razzaq A., Thiripuranathar G., Rana N.F., Menaa F. Green and Cost-Effective Synthesis of Metallic Nanoparticles by Algae: Safe Methods for Translational Medicine. Bioengineering. 2020;7:129. doi: 10.3390/bioengineering7040129. PubMed DOI PMC

Hanafy M.H. Myconanotechnology in veterinary sector: Status quo and future perspectives. Int. J. Vet. Sci. Med. 2018;6:270–273. doi: 10.1016/j.ijvsm.2018.11.003. PubMed DOI PMC

Khandel P., Shahi S.K. Mycogenic nanoparticles and their bio-prospective applications: Current status and future challenges. J. Nanostructure Chem. 2018;8:369–391. doi: 10.1007/s40097-018-0285-2. DOI

Chauhan A., Anand J., Parkash V., Rai N. Biogenic synthesis: A sustainable approach for nanoparticles synthesis mediated by fungi. Inorg. Nano-Metal Chem. 2022:1–14. doi: 10.1080/24701556.2021.2025078. DOI

Owaid M.N., Ibraheem I. Mycosynthesis of nanoparticles using edible and medicinal mushrooms. Eur. J. Nanomed. 2017;9:5–23. doi: 10.1515/ejnm-2016-0016. DOI

Guilger Casagrande M., De Lima R. Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Front. Bioeng. Biotechnol. 2019;7:287. doi: 10.3389/fbioe.2019.00287. PubMed DOI PMC

Khan A.U., Malik N., Khan M., Cho M.H., Khan M.M. Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess Biosyst. Eng. 2017;41:1–20. doi: 10.1007/s00449-017-1846-3. PubMed DOI

Khalid S., Shahid M., Niazi N.K., Murtaza B., Bibi I., Dumat C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017;182:247–268. doi: 10.1016/j.gexplo.2016.11.021. DOI

Hou D., O’Connor D., Igalavithana A.D., Alessi D.S., Luo J., Tsang D.C.W., Sparks D.L., Yamauchi Y., Rinklebe J., Ok Y.S. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 2020;1:366–381. doi: 10.1038/s43017-020-0061-y. DOI

Igiri B.E., Okoduwa S.I., Idoko G.O., Akabuogu E.P., Adeyi A.O., Ejiogu I.K. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. J. Toxicol. 2018;2018:2568038. doi: 10.1155/2018/2568038. PubMed DOI PMC

Graz M., Pawlikowska-Pawlęga B., Jarosz-Wilkołazka A. Growth inhibition and intracellular distribution of Pb ions by the white-rot fungus Abortiporus biennis. Int. Biodeterior. Biodegrad. 2011;65:124–129. doi: 10.1016/j.ibiod.2010.08.010. DOI

Liaquat F., Munis M.F.H., Haroon U., Arif S., Saqib S., Zaman W., Khan A.R., Shi J., Che S., Liu Q. Evaluation of Metal Tolerance of Fungal Strains Isolated from Contaminated Mining Soil of Nanjing, China. Biology. 2020;9:469. doi: 10.3390/biology9120469. PubMed DOI PMC

Rose P.K., Devi R. Heavy metal tolerance and adaptability assessment of indigenous filamentous fungi isolated from industrial wastewater and sludge samples. Beni-Suef Univ. J. Basic Appl. Sci. 2018;7:688–694. doi: 10.1016/j.bjbas.2018.08.001. DOI

Colpaert J.V., Van Assche J.A. The effects of cadmium and the cadmium-zinc interaction on the axenic growth of ectomycorrhizal fungi. Plant Soil. 1992;145:237–243. doi: 10.1007/BF00010352. DOI

Traxler L., Shrestha J., Richter M., Krause K., Schäfer T., Kothe E. Metal adaptation and transport in hyphae of the wood-rot fungus Schizophyllum commune. J. Hazard. Mater. 2021;425:127978. doi: 10.1016/j.jhazmat.2021.127978. PubMed DOI

Jo Y.-K., Kim B.H., Jung G. Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi. Plant Dis. 2009;93:1037–1043. doi: 10.1094/PDIS-93-10-1037. PubMed DOI

Malandrakis A.A., Kavroulakis N., Chrysikopoulos C. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci. Total Environ. 2019;670:292–299. doi: 10.1016/j.scitotenv.2019.03.210. PubMed DOI

Barros D., Pradhan A., Pascoal C., Cássio F. Proteomic responses to silver nanoparticles vary with the fungal ecotype. Sci. Total Environ. 2020;704:135385. doi: 10.1016/j.scitotenv.2019.135385. PubMed DOI

Sun M., Yu Q., Hu M., Hao Z., Zhang C., Li M. Lead sulfide nanoparticles increase cell wall chitin content and induce apoptosis in Saccharomyces cerevisiae. J. Hazard. Mater. 2014;273:7–16. doi: 10.1016/j.jhazmat.2014.03.008. PubMed DOI

Lemire J.A., Harrison J.J., Turner R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013;11:371–384. doi: 10.1038/nrmicro3028. PubMed DOI

Tamás M.J., Sharma S.K., Ibstedt S., Jacobson T., Christen P. Heavy Metals and Metalloids As a Cause for Protein Misfolding and Aggregation. Biomolecules. 2014;4:252–267. doi: 10.3390/biom4010252. PubMed DOI PMC

Mohan P.M., Sastry K.S. Excretion of pyruvate in nickel toxicity in wild type and Ni2+ resistant mutants of Neurospora crassa. J. Biosci. 1984;6:283–288. doi: 10.1007/BF02716742. DOI

Ramadan S.E., Razak A.A., Soliman H.G. Influence of cadmium on certain biological activities in a cadmium-tolerant fungi. Biol. Trace Element Res. 1988;18:179–190. doi: 10.1007/BF02917502. PubMed DOI

Faller P., Kienzler K., Krieger-Liszkay A. Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. Biochim. Biophys. Acta. 2005;1706:158–164. doi: 10.1016/j.bbabio.2004.10.005. PubMed DOI

Hartwig A. Zinc Finger Proteins as Potential Targets for Toxic Metal Ions: Differential Effects on Structure and Function. Antioxid. Redox Signal. 2001;3:625–634. doi: 10.1089/15230860152542970. PubMed DOI

Jin Y.H., Clark A.B., Slebos R.J.C., Al-Refai H., Taylor J., Kunkel T., Resnick M., Gordenin D.A. Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat. Genet. 2003;34:326–329. doi: 10.1038/ng1172. PubMed DOI PMC

Naganuma A., Miura N., Kaneko S., Mishina T., Hosoya S., Miyairi S., Furuchi T., Kuge S. GFAT as a target molecule of methylmercury toxicity in Saccharomyces cerevisiae. FASEB J. 2000;14:968–972. doi: 10.1096/fasebj.14.7.968. PubMed DOI

Sharma S.K., Goloubinoff P., Christen P. Heavy metal ions are potent inhibitors of protein folding. Biochem. Biophys. Res. Commun. 2008;372:341–345. doi: 10.1016/j.bbrc.2008.05.052. PubMed DOI

Robinson J., Isikhuemhen O., Anike F. Fungal–Metal Interactions: A Review of Toxicity and Homeostasis. J. Fungi. 2021;7:225. doi: 10.3390/jof7030225. PubMed DOI PMC

Zhang Q., Zeng G., Chen G., Yan M., Chen A., Du J., Huang J., Yi B., Zhou Y., He X., et al. The Effect of Heavy Metal-Induced Oxidative Stress on the Enzymes in White Rot Fungus Phanerochaete chrysosporium. Appl. Biochem. Biotechnol. 2014;175:1281–1293. doi: 10.1007/s12010-014-1298-z. PubMed DOI

Ameen F., Alsamhary K., Alabdullatif J.A., Alnadhari S. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol. Environ. Saf. 2021;213:112027. doi: 10.1016/j.ecoenv.2021.112027. PubMed DOI

García-Saucedo C., Field J.A., Otero-Gonzalez L., Sierra-Álvarez R. Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae. J. Hazard. Mater. 2011;192:1572–1579. doi: 10.1016/j.jhazmat.2011.06.081. PubMed DOI

Otero-González L., García-Saucedo C., Field J.A., Sierra-Álvarez R. Toxicity of TiO2, ZrO2, Fe0, Fe2O3, and Mn2O3 nanoparticles to the yeast, Saccharomyces cerevisiae. Chemosphere. 2013;93:1201–1206. doi: 10.1016/j.chemosphere.2013.06.075. PubMed DOI

Ezzouhri L., Castro E., Moya M., Espinola F., Lairini K. Heavy Metal Tolerance of Filamentous Fungi Isolated from Polluted Sites in Tangier, Morocco. Afr. J. Microbiol. Res. 2009;3:35–48. doi: 10.5897/AJMR.9000354. DOI

Colpaert J.V., Vandenkoornhuyse P., Adriaensen K., Vangronsveld J. Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus Luteus. New Phytol. 2000;147:367–379. doi: 10.1046/j.1469-8137.2000.00694.x. DOI

Howe R., Evans R.L., Ketteridge S.W. Copper-binding proteins in ectomycorrhizal fungi. New Phytol. 1997;135:123–131. doi: 10.1046/j.1469-8137.1997.00622.x. PubMed DOI

Baldrian P., Gabriel J. Intraspecific Variability in Growth Response to Cadmium of the Wood-Rotting Fungus Piptoporus Betulinus. Mycologia. 2002;94:428–436. doi: 10.1080/15572536.2003.11833208. PubMed DOI

Canovas D., Vooijs R., Schat H., de Lorenzo V. The Role of Thiol Species in the Hypertolerance of Aspergillus sp. P37 to Arsenic. J. Biol. Chem. 2004;279:51234–51240. doi: 10.1074/jbc.M408622200. PubMed DOI

Geetha N., Bhavya G., Abhijith P., Shekhar R., Dayananda K., Jogaiah S. Insights into nanomycoremediation: Secretomics and mycogenic biopolymer nanocomposites for heavy metal detoxification. J. Hazard. Mater. 2021;409:124541. doi: 10.1016/j.jhazmat.2020.124541. PubMed DOI

Ott T., Fritz E., Polle A., Schützendübel A. Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiol. Ecol. 2002;42:359–366. doi: 10.1111/j.1574-6941.2002.tb01025.x. PubMed DOI

Courbot M., Diez L., Ruotolo R., Chalot M., Leroy P. Cadmium-Responsive Thiols in the Ectomycorrhizal Fungus Paxillus involutus. Appl. Environ. Microbiol. 2004;70:7413–7417. doi: 10.1128/AEM.70.12.7413-7417.2004. PubMed DOI PMC

Su Z., Zeng Y., Li X., Perumal A.B., Zhu J., Lu X., Dai M., Liu X., Lin F. The Endophytic Fungus Piriformospora Indica-Assisted Alleviation of Cadmium in Tobacco. J. Fungi. 2021;7:675. doi: 10.3390/jof7080675. PubMed DOI PMC

Morselt A.F.W., Smits W.T.M., Limonard T. Histochemical demonstration of heavy metal tolerance in ectomycorrhizal fungi. Plant Soil. 1986;96:417–420. doi: 10.1007/BF02375146. DOI

Leonhardt T., Sácký J., Šimek P., Šantrůček J., Kotrba P. Metallothionein-like peptides involved in sequestration of Zn in the Zn-accumulating ectomycorrhizal fungus Russula atropurpurea. Metallomics. 2014;6:1693–1701. doi: 10.1039/C4MT00141A. PubMed DOI

Sardar U.R., Bhargavi E., Devi I., Bhunia B., Tiwari O.N. Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: A critical review. Carbohydr. Polym. 2018;199:353–364. doi: 10.1016/j.carbpol.2018.07.037. PubMed DOI

Liu W., Zhang J., Jin Y., Zhao X., Cai Z. Adsorption of Pb(II), Cd(II) and Zn(II) by extracellular polymeric substances extracted from aerobic granular sludge: Efficiency of protein. J. Environ. Chem. Eng. 2015;3:1223–1232. doi: 10.1016/j.jece.2015.04.009. DOI

Dang C., Yang Z., Liu W., Du P., Cui F., He K. Role of extracellular polymeric substances in biosorption of Pb2+ by a high metal ion tolerant fungal strain Aspergillus niger PTN31. J. Environ. Chem. Eng. 2018;6:2733–2742. doi: 10.1016/j.jece.2018.04.005. DOI

Wei L., Li Y., Noguera D., Zhao N., Song Y., Ding J., Zhao Q., Cui F. Adsorption of Cu2+ and Zn2+ by extracellular polymeric substances (EPS) in different sludges: Effect of EPS fractional polarity on binding mechanism. J. Hazard. Mater. 2017;321:473–483. doi: 10.1016/j.jhazmat.2016.05.016. PubMed DOI

Tourney J., Ngwenya B.T. The role of bacterial extracellular polymeric substances in geomicrobiology. Chem. Geol. 2014;386:115–132. doi: 10.1016/j.chemgeo.2014.08.011. DOI

Vacchina V., Baldrián P., Gabriel J., Szpunar J. Investigation of the response of wood-rotting fungi to copper stress by size-exclusion chromatography and capillary zone electrophoresis with ICP MS detection. Anal. Bioanal. Chem. 2001;372:453–456. doi: 10.1007/s00216-001-1104-y. PubMed DOI

Li N., Liu J., Yang R., Wu L. Distribution, characteristics of extracellular polymeric substances of Phanerochaete chrysosporium under lead ion stress and the influence on Pb removal. Sci. Rep. 2020;10:17633. doi: 10.1038/s41598-020-74983-0. PubMed DOI PMC

Suh J.H., Yun J.W., Kim D.S. Effect of extracellular polymeric substances (EPS) on Pb2+ accumulation by Aureobasidium pullulans. Bioprocess Biosyst. Eng. 1999;21:1–4. doi: 10.1007/PL00009061. DOI

Cao F., Bourven I., Guibaud G., Rene E.R., Lens P.N., Pechaud Y., van Hullebusch E.D. Alteration of the characteristics of extracellular polymeric substances (EPS) extracted from the fungus Phanerochaete chrysosporium when exposed to sub-toxic concentrations of nickel (II) Int. Biodeterior. Biodegrad. 2018;129:179–188. doi: 10.1016/j.ibiod.2018.02.009. DOI

Mattoon E., Cordero R., Casadevall A. Fungal Melanins and Applications in Healthcare, Bioremediation and Industry. J. Fungi. 2021;7:488. doi: 10.3390/jof7060488. PubMed DOI PMC

Fogarty R.V., Tobin J.M. Fungal melanins and their interactions with metals. Enzym. Microb. Technol. 1996;19:311–317. doi: 10.1016/0141-0229(96)00002-6. PubMed DOI

Liu R., Meng X., Mo C., Wei X., Ma A. Melanin of fungi: From classification to application. World J. Microbiol. Biotechnol. 2022;38:228. doi: 10.1007/s11274-022-03415-0. PubMed DOI

García-Rivera J., Casadevall A. Melanization of Cryptococcus neoformans reduces its susceptibility to the antimicrobial effects of silver nitrate. Med. Mycol. 2001;39:353–357. doi: 10.1080/mmy.39.4.353.357. PubMed DOI

Gadd G.M., De Rome L. Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol. 1988;29:610–617. doi: 10.1007/BF00260993. DOI

Berthelot C., Zegeye A., Gaber D.A., Chalot M., Franken P., Kovács G.M., Leyval C., Blaudez D. Unravelling the Role of Melanin in Cd and Zn Tolerance and Accumulation of Three Dark Septate Endophytic Species. Microorganisms. 2020;8:537. doi: 10.3390/microorganisms8040537. PubMed DOI PMC

Oh J.-J., Kim J.Y., Kim Y.J., Kim S., Kim G.-H. Utilization of extracellular fungal melanin as an eco-friendly biosorbent for treatment of metal-contaminated effluents. Chemosphere. 2021;272:129884. doi: 10.1016/j.chemosphere.2021.129884. PubMed DOI

Gadd G.M., editor. Fungi in Biogeochemical Cycles. Cambridge University Press; Cambridge, UK: 2006.

Polák F., Urík M., Bujdoš M., Uhlík P., Matúš P. Evaluation of aluminium mobilization from its soil mineral pools by simultaneous effect of Aspergillus strains’ acidic and chelating exometabolites. J. Inorg. Biochem. 2018;181:162–168. doi: 10.1016/j.jinorgbio.2017.09.006. PubMed DOI

Sayer J.A., Gadd G.M. Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol. Res. 1997;101:653–661. doi: 10.1017/S0953756296003140. DOI

Sazanova K., Osmolovskaya N., Schiparev S., Yakkonen K., Kuchaeva L., Vlasov D. Organic Acids Induce Tolerance to Zinc- and Copper-Exposed Fungi Under Various Growth Conditions. Curr. Microbiol. 2014;70:520–527. doi: 10.1007/s00284-014-0751-0. PubMed DOI

Fomina M., Hillier S., Charnock J.M., Melville K., Alexander I.J., Gadd G.M. Role of Oxalic Acid Overexcretion in Transformations of Toxic Metal Minerals by Beauveria caledonica. Appl. Environ. Microbiol. 2005;71:371–381. doi: 10.1128/AEM.71.1.371-381.2005. PubMed DOI PMC

Ge W., Zamri D., Mineyama H., Valix M. Bioaccumulation of heavy metals on adapted Aspergillus foetidus. Adsorption. 2011;17:901–910. doi: 10.1007/s10450-011-9359-x. DOI

Magyarosy A., Laidlaw R., Kilaas R., Echer C., Clark D., Keasling J. Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Appl. Microbiol. Biotechnol. 2002;59:382–388. doi: 10.1007/s00253-002-1020-x. PubMed DOI

Jarosz-Wilkolazka A., Gadd G.M. Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere. 2003;52:541–547. doi: 10.1016/S0045-6535(03)00235-2. PubMed DOI

Tang J.D., Parker L.A., Perkins A.D., Sonstegard T.S., Schroeder S.G., Nicholas D.D., Diehl S.V. Gene Expression Analysis of Copper Tolerance and Wood Decay in the Brown Rot Fungus Fibroporia radiculosa. Appl. Environ. Microbiol. 2013;79:1523–1533. doi: 10.1128/AEM.02916-12. PubMed DOI PMC

Kumar V., Dwivedi S.K. Mycoremediation of heavy metals: Processes, mechanisms, and affecting factors. Environ. Sci. Pollut. Res. 2021;28:10375–10412. doi: 10.1007/s11356-020-11491-8. PubMed DOI

Goyal N., Jain S., Banerjee U. Comparative studies on the microbial adsorption of heavy metals. Adv. Environ. Res. 2003;7:311–319. doi: 10.1016/S1093-0191(02)00004-7. DOI

Tan T., Cheng P. Biosorption of Metal Ions with Penicillium chrysogenum. Appl. Biochem. Biotechnol. 2003;104:119–128. doi: 10.1385/ABAB:104:2:119. PubMed DOI

Zapotoczny S., Jurkiewicz A., Tylko G., Anielska T., Turnau K. Accumulation of copper by Acremonium pinkertoniae, a fungus isolated from industrial wastes. Microbiol. Res. 2007;162:219–228. doi: 10.1016/j.micres.2006.03.008. PubMed DOI

González-Guerrero M., Melville L.H., Ferrol N., Lott J.N., Azcón-Aguilar C., Peterson R.L. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can. J. Microbiol. 2008;54:103–110. doi: 10.1139/W07-119. PubMed DOI

Wang H.-R., Zhao X.-Y., Zhang J.-M., Lu C., Feng F.-J. Arbuscular mycorrhizal fungus regulates cadmium accumulation, migration, transport, and tolerance in Medicago sativa. J. Hazard. Mater. 2022;435:129077. doi: 10.1016/j.jhazmat.2022.129077. PubMed DOI

Boriová K., Čerňanský S., Matúš P., Bujdoš M., Šimonovičová A. Bioaccumulation and biovolatilization of various elements using filamentous fungus Scopulariopsis brevicaulis. Lett. Appl. Microbiol. 2014;59:217–223. doi: 10.1111/lam.12266. PubMed DOI

Sintuprapa W., Thiravetyan P., Tanticharoen M. A possible mechanism of Zn2+ uptake by living cells of Penicillium sp. Biotechnol. Lett. 2000;22:1709–1712. doi: 10.1023/A:1005688132205. DOI

Lapinskas P.J., Lin S.-J., Culotta V.C. The role of the Saccharomyces cerevisiae CCC1 gene in the homeostasis of manganese ions. Mol. Microbiol. 1996;21:519–528. doi: 10.1111/j.1365-2958.1996.tb02561.x. PubMed DOI

Schmidt K., Wolfe D.M., Stiller B., Pearce D.A. Cd2+, Mn2+, Ni2+ and Se2+ toxicity to Saccharomyces cerevisiae lacking YPK9p the orthologue of human ATP13A2. Biochem. Biophys. Res. Commun. 2009;383:198–202. doi: 10.1016/j.bbrc.2009.03.151. PubMed DOI PMC

Devirgiliis C., Murgia C., Danscher G., Perozzi G. Exchangeable zinc ions transiently accumulate in a vesicular compartment in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 2004;323:58–64. doi: 10.1016/j.bbrc.2004.08.051. PubMed DOI

Barros D., Pradhan A., Pascoal C., Cássio F. Transcriptomics reveals the action mechanisms and cellular targets of citrate-coated silver nanoparticles in a ubiquitous aquatic fungus. Environ. Pollut. 2020;268:115913. doi: 10.1016/j.envpol.2020.115913. PubMed DOI

Sharma K., Giri R., Sharma R. Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora. Lett. Appl. Microbiol. 2020;71:637–644. doi: 10.1111/lam.13372. PubMed DOI

Ruytinx J., Nguyen H., Van Hees M., De Beeck M.O., Vangronsveld J., Carleer R., Colpaert J.V., Adriaensen K. Zinc export results in adaptive zinc tolerance in the ectomycorrhizal basidiomycete Suillus bovinus. Metallomics. 2013;5:1225–1233. doi: 10.1039/c3mt00061c. PubMed DOI

Blaudez D., Botton B., Chalot M. Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology. 2000;146:1109–1117. doi: 10.1099/00221287-146-5-1109. PubMed DOI

Bellion M., Courbot M., Jacob C., Blaudez D., Chalot M., Courbot M. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol. Lett. 2006;254:173–181. doi: 10.1111/j.1574-6968.2005.00044.x. PubMed DOI

Smith A.D., Logeman B.L., Thiele D.J. Copper Acquisition and Utilization in Fungi. Annu. Rev. Microbiol. 2017;71:597–623. doi: 10.1146/annurev-micro-030117-020444. PubMed DOI PMC

Liu X., Jiang Y., He D., Fang X., Xu J., Lee Y.-W., Keller N.P., Shi J. Copper Tolerance Mediated by FgAceA and FgCrpA in Fusarium graminearum. Front. Microbiol. 2020;11:1392. doi: 10.3389/fmicb.2020.01392. PubMed DOI PMC

Mukherjee A., Das D., Mondal S.K., Biswas R., Das T.K., Boujedaini N., Khuda-Bukhsh A.R. Tolerance of arsenate-induced stress in Aspergillus niger, a possible candidate for bioremediation. Ecotoxicol. Environ. Saf. 2010;73:172–182. doi: 10.1016/j.ecoenv.2009.09.015. PubMed DOI

Sharples J.M., Meharg A.A., Chambers S.M., Cairney J.W. Mechanism of Arsenate Resistance in the Ericoid Mycorrhizal Fungus Hymenoscyphus ericae. Plant Physiol. 2000;124:1327–1334. doi: 10.1104/pp.124.3.1327. PubMed DOI PMC

Culotta V.C., Yang M., Hall M.D. Manganese Transport and Trafficking: Lessons Learned from Saccharomyces cerevisiae. Eukaryot. Cell. 2005;4:1159–1165. doi: 10.1128/EC.4.7.1159-1165.2005. PubMed DOI PMC

Farcasanu I.C., Mizunuma M., Hirata D., Miyakawa T. Involvement of histidine permease (Hip1p) in manganese transport in Saccharomyces cerevisiae. Mol. Gen. Genet. 1998;259:541–548. doi: 10.1007/s004380050846. PubMed DOI

Diss L., Blaudez D., Gelhaye E., Chalot M. Genome-wide analysis of fungal manganese transporters, with an emphasis on Phanerochaete chrysosporium. Environ. Microbiol. Rep. 2011;3:367–382. doi: 10.1111/j.1758-2229.2010.00235.x. PubMed DOI

Antsotegi-Uskola M., Markina-Iñarrairaegui A., Ugalde U. Copper Resistance in Aspergillus nidulans Relies on the PI-Type ATPase CrpA, Regulated by the Transcription Factor AceA. Front. Microbiol. 2017;8:912. doi: 10.3389/fmicb.2017.00912. PubMed DOI PMC

Ahmed S., Ahmad M., Swami B.L., Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2015;7:17–28. doi: 10.1016/j.jare.2015.02.007. PubMed DOI PMC

Kharisov B.I., Kharissova O.V., Ortiz-Mendez U., editors. CRC Concise Encyclopedia of Nanotechnology. CRC Press; Boca Raton, FL, USA: 2016.

Shedbalkar U., Singh R., Wadhwani S., Gaidhani S., Chopade B. Microbial synthesis of gold nanoparticles: Current status and future prospects. Adv. Colloid Interface Sci. 2014;209:40–48. doi: 10.1016/j.cis.2013.12.011. PubMed DOI

Konvičková Z., Holišová V., Kolenčík M., Niide T., Kratošová G., Umetsu M., Seidlerová J. Phytosynthesis of colloidal Ag-AgCl nanoparticles mediated by Tilia sp. leachate, evaluation of their behaviour in liquid phase and catalytic properties. Colloid Polym. Sci. 2018;296:677–687. doi: 10.1007/s00396-018-4290-2. DOI

Hiemenz P.C., Rajagopalan R., editors. Principles of Colloid and Surface Chemistry, Revised and Expanded. CRC Press; Boca Raton, FL, USA: 2016.

Ovais M., Khalil A.T., Ayaz M., Ahmad I., Nethi S.K., Mukherjee S. Biosynthesis of Metal Nanoparticles via Microbial Enzymes: A Mechanistic Approach. Int. J. Mol. Sci. 2018;19:4100. doi: 10.3390/ijms19124100. PubMed DOI PMC

Patra C.R., Mukherjee S., Kotcherlakota R. Biosynthesized Silver Nanoparticles: A Step Forward for Cancer Theranostics? Nanomedicine. 2014;9:1445–1448. doi: 10.2217/nnm.14.89. PubMed DOI

Gholami-Shabani M., Akbarzadeh A., Norouzian D., Amini A., Gholami-Shabani Z., Imani A., Chiani M., Riazi G., Shams-Ghahfarokhi M., Razzaghi-Abyaneh M. Antimicrobial Activity and Physical Characterization of Silver Nanoparticles Green Synthesized Using Nitrate Reductase from Fusarium oxysporum. Appl. Biochem. Biotechnol. 2014;172:4084–4098. doi: 10.1007/s12010-014-0809-2. PubMed DOI

Kumari R., Barsainya M., Singh D.P. Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa. Environ. Sci. Pollut. Res. 2016;24:4645–4654. doi: 10.1007/s11356-016-8170-3. PubMed DOI

Khan N.T., Khan M.J., Jameel J., Jameel N., Rheman S.U.A. An Overview: Biological Organisms That Serves as Nanofactories for Metallic Nanoparticles Synthesis and Fungi Being the Most Appropriate. Bioceram. Dev. Appl. 2017;7 doi: 10.4172/2090-5025.1000101. DOI

Seshadri S., Saranya K., Kowshik M. Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol. Prog. 2011;27:1464–1469. doi: 10.1002/btpr.651. PubMed DOI

Ahmad A., Mukherjee P., Senapati S., Mandal D., Khan M.I., Kumar R., Sastry M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces. 2003;28:313–318. doi: 10.1016/S0927-7765(02)00174-1. DOI

Elamawi R.M., Al-Harbi R.E., Hendi A.A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biol. Pest Control. 2018;28:28. doi: 10.1186/s41938-018-0028-1. DOI

Gudikandula K., Vadapally P., Charya M.S. Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies. OpenNano. 2017;2:64–78. doi: 10.1016/j.onano.2017.07.002. DOI

Metuku R.P., Pabba S., Burra S., Hima Bindu N., SV SS S.L., Gudikandula K., Charya S. Biosynthesis of silver nanoparticles from Schizophyllum radiatum HE 863742.1: Their characterization and antimicrobial activity. 3 Biotech. 2013;4:227–234. doi: 10.1007/s13205-013-0138-0. PubMed DOI PMC

Rajput S., Werezuk R., Lange R.M., McDermott M.T. Fungal Isolate Optimized for Biogenesis of Silver Nanoparticles with Enhanced Colloidal Stability. Langmuir. 2016;32:8688–8697. doi: 10.1021/acs.langmuir.6b01813. PubMed DOI

Kitching M., Choudhary P., Inguva S., Guo Y., Ramani M., Das S.K., Marsili E. Fungal surface protein mediated one-pot synthesis of stable and hemocompatible gold nanoparticles. Enzym. Microb. Technol. 2016;95:76–84. doi: 10.1016/j.enzmictec.2016.08.007. PubMed DOI

Suryavanshi P., Pandit R., Gade A., Derita M., Zachino S., Rai M. Colletotrichum sp.- mediated synthesis of sulphur and aluminium oxide nanoparticles and its in vitro activity against selected food-borne pathogens. LWT Food Sci. Technol. 2017;81:188–194. doi: 10.1016/j.lwt.2017.03.038. DOI

Ottoni C.A., Simões M.F., Fernandes S., dos Santos J.G., da Silva E.S., de Souza R.F.B., Maiorano A.E. Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express. 2017;7:31. doi: 10.1186/s13568-017-0332-2. PubMed DOI PMC

Ma L., Su W., Liu J.-X., Zeng X.-X., Huang Z., Li W., Liu Z.-C., Tang J.-X. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. Mater. Sci. Eng. C. 2017;77:963–971. doi: 10.1016/j.msec.2017.03.294. PubMed DOI

Azmath P., Baker S., Rakshith D., Satish S. Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm. J. 2016;24:140–146. doi: 10.1016/j.jsps.2015.01.008. PubMed DOI PMC

AbdelRahim K., Mahmoud S.Y., Ali A.M., Almaary K.S., Mustafa A.E.-Z.M., Husseiny S.M. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J. Biol. Sci. 2017;24:208–216. doi: 10.1016/j.sjbs.2016.02.025. PubMed DOI PMC

Shahzad A., Saeed H., Iqtedar M., Hussain S.Z., Kaleem A., Abdullah R., Sharif S., Naz S., Saleem F., Aihetasham A., et al. Size-Controlled Production of Silver Nanoparticles by Aspergillus fumigatus BTCB10: Likely Antibacterial and Cytotoxic Effects. J. Nanomater. 2019;2019:5168698. doi: 10.1155/2019/5168698. DOI

Husseiny S.M., Salah T.A., Anter H.A. Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef Univ. J. Basic Appl. Sci. 2015;4:225–231. doi: 10.1016/j.bjbas.2015.07.004. DOI

Birla S.S., Gaikwad S.C., Gade A.K., Rai M.K. Rapid Synthesis of Silver Nanoparticles from Fusarium oxysporum by Optimizing Physicocultural Conditions. Sci. World J. 2013;2013:796018. doi: 10.1155/2013/796018. PubMed DOI PMC

Sreedharan S.M., Gupta S., Saxena A.K., Singh R. Macrophomina phaseolina: Microbased biorefinery for gold nanoparticle production. Ann. Microbiol. 2019;69:435–445. doi: 10.1007/s13213-018-1434-z. DOI

Azam Z., Ayaz A., Younas M., Qureshi Z., Arshad B., Zaman W., Ullah F., Nasar M.Q., Bahadur S., Irfan M.M., et al. Microbial synthesized cadmium oxide nanoparticles induce oxidative stress and protein leakage in bacterial cells. Microb. Pathog. 2020;144:104188. doi: 10.1016/j.micpath.2020.104188. PubMed DOI

Borovaya M., Pirko Y., Krupodorova T., Naumenko A., Blume Y., Yemets A. Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.) P. Kumm. Biotechnol. Biotechnol. Equip. 2015;29:1156–1163. doi: 10.1080/13102818.2015.1064264. DOI

Vijayanandan A.S., Balakrishnan R.M. Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans. J. Environ. Manag. 2018;218:442–450. doi: 10.1016/j.jenvman.2018.04.032. PubMed DOI

Saravanakumar K., Shanmugam S., Varukattu N.B., MubarakAli D., Kathiresan K., Wang M.-H. Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. J. Photochem. Photobiol. B Biol. 2019;190:103–109. doi: 10.1016/j.jphotobiol.2018.11.017. PubMed DOI

Chatterjee S., Mahanty S., Das P., Chaudhuri P., Das S. Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr(VI) from aqueous solution. Chem. Eng. J. 2019;385:123790. doi: 10.1016/j.cej.2019.123790. DOI

Salvadori M.R., Nascimento C.A.O., Corrêa B. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus. Sci. Rep. 2014;4:6404. doi: 10.1038/srep06404. PubMed DOI PMC

Diko C.S., Qu Y., Henglin Z., Li Z., Nahyoon N.A., Fan S. Biosynthesis and characterization of lead selenide semiconductor nanoparticles (PbSe NPs) and its antioxidant and photocatalytic activity. Arab. J. Chem. 2020;13:8411–8423. doi: 10.1016/j.arabjc.2020.06.005. DOI

Tarver S., Gray D., Loponov K., Das D.B., Sun T., Sotenko M. Biomineralization of Pd nanoparticles using Phanerochaete chrysosporium as a sustainable approach to turn platinum group metals (PGMs) wastes into catalysts. Int. Biodeterior. Biodegrad. 2019;143:104724. doi: 10.1016/j.ibiod.2019.104724. DOI

Rajakumar G., Rahuman A.A., Roopan S.M., Khanna V.G., Elango G., Kamaraj C., Zahir A.A., Velayutham K. Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012;91:23–29. doi: 10.1016/j.saa.2012.01.011. PubMed DOI

Nayak R.R., Pradhan N., Behera D., Pradhan K.M., Mishra S., Sukla L.B., Mishra B.K. Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: The process and optimization. J. Nanoparticle Res. 2011;13:3129–3137. doi: 10.1007/s11051-010-0208-8. DOI

Du L., Xu Q., Huang M., Xian L., Feng J.-X. Synthesis of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue. Mater. Chem. Phys. 2015;160:40–47. doi: 10.1016/j.matchemphys.2015.04.003. DOI

Gurunathan S., Kalishwaralal K., Vaidyanathan R., Venkataraman D., Pandian S.R.K., Muniyandi J., Hariharan N., Eom S.H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surfaces B Biointerfaces. 2009;74:328–335. doi: 10.1016/j.colsurfb.2009.07.048. PubMed DOI

Balakumaran M., Ramachandran R., Kalaichelvan P. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol. Res. 2015;178:9–17. doi: 10.1016/j.micres.2015.05.009. PubMed DOI

Silva L.P.C., Oliveira J.P., Keijok W.J., da Silva A.R., Aguiar A.R., Guimarães M.C.C., Ferraz C.M., Araújo J.V., Tobias F.L., Braga F.R. Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans. Int. J. Nanomed. 2017;12:6373–6381. doi: 10.2147/IJN.S137703. PubMed DOI PMC

Saxena J., Sharma P.K., Sharma M.M., Singh A. Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties. SpringerPlus. 2016;5:861. doi: 10.1186/s40064-016-2558-x. PubMed DOI PMC

Rose G.K., Soni R., Rishi P., Soni S.K. Optimization of the biological synthesis of silver nanoparticles using Penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens. Green Process. Synth. 2019;8:144–156. doi: 10.1515/gps-2018-0042. DOI

Xue B., He D., Gao S., Wang D., Yokoyama K., Wang L. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int. J. Nanomed. 2016;11:1899–1906. doi: 10.2147/IJN.S98339. PubMed DOI PMC

Phanjom P., Ahmed G. Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae(MTCC No. 1846) and their antibacterial effect. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017;8:045016. doi: 10.1088/2043-6254/aa92bc. DOI

Nasr M. Nanotechnology Application in Agricultural Sector. In: Prasad R., Kumar V., Kumar M., Choudhary D., editors. Nanobiotechnology in Bioformulations. Springer International Publishing; Cham, Switzerland: 2019. pp. 317–329.

Wu Z., Yang S., Wu W. Shape control of inorganic nanoparticles from solution. Nanoscale. 2015;8:1237–1259. doi: 10.1039/C5NR07681A. PubMed DOI

Gahukar R.T., Das R.K. Plant-derived nanopesticides for agricultural pest control: Challenges and prospects. Nanotechnol. Environ. Eng. 2020;5:3. doi: 10.1007/s41204-020-0066-2. DOI

Gade A.K., Bonde P., Ingle A.P., Marcato P.D., Durán N., Rai M.K. Exploitation of Aspergillus niger for Synthesis of Silver Nanoparticles. J. Biobased Mater. Bioenergy. 2008;2:243–247. doi: 10.1166/jbmb.2008.401. DOI

Jian W., Zhang L., Siu K.-C., Song A., Wu J.-Y. Formation and Physiochemical Properties of Silver Nanoparticles with Various Exopolysaccharides of a Medicinal Fungus in Aqueous Solution. Molecules. 2016;22:50. doi: 10.3390/molecules22010050. PubMed DOI PMC

Bharde A., Rautaray D., Bansal V., Ahmad A., Sarkar I., Yusuf S.M., Sanyal M., Sastry M. Extracellular Biosynthesis of Magnetite using Fungi. Small. 2006;2:135–141. doi: 10.1002/smll.200500180. PubMed DOI

Kumar S.A., Ansary A.A., Ahmad A., Khan M.I. Extracellular Biosynthesis of CdSe Quantum Dots by the Fungus, Fusarium Oxysporum. J. Biomed. Nanotechnol. 2007;3:190–194. doi: 10.1166/jbn.2007.027. DOI

Sanghi R., Verma P., Puri S. Enzymatic Formation of Gold Nanoparticles Using Phanerochaete Chrysosporium. Adv. Chem. Eng. Sci. 2011;1:154–162. doi: 10.4236/aces.2011.13023. DOI

Philip D. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009;73:374–381. doi: 10.1016/j.saa.2009.02.037. PubMed DOI

Maruyama T., Fujimoto Y., Maekawa T. Synthesis of gold nanoparticles using various amino acids. J. Colloid Interface Sci. 2015;447:254–257. doi: 10.1016/j.jcis.2014.12.046. PubMed DOI

Polavarapu L., Xu Q.-H. A single-step synthesis of gold nanochains using an amino acid as a capping agent and characterization of their optical properties. Nanotechnology. 2008;19:075601. doi: 10.1088/0957-4484/19/7/075601. PubMed DOI

Liu F.-K., Ko F.-H., Huang P.-W., Wu C.-H., Chu T.-C. Studying the size/shape separation and optical properties of silver nanoparticles by capillary electrophoresis. J. Chromatogr. A. 2004;1062:139–145. doi: 10.1016/j.chroma.2004.11.010. PubMed DOI

Zhao Y., Tian Y., Cui Y., Liu W., Ma W., Jiang X. Small Molecule-Capped Gold Nanoparticles as Potent Antibacterial Agents That Target Gram-Negative Bacteria. J. Am. Chem. Soc. 2010;132:12349–12356. doi: 10.1021/ja1028843. PubMed DOI

Duan H., Wang D., Li Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015;44:5778–5792. doi: 10.1039/C4CS00363B. PubMed DOI

Boury B., Plumejeau S. Metal oxides and polysaccharides: An efficient hybrid association for materials chemistry. Green Chem. 2014;17:72–88. doi: 10.1039/C4GC00957F. DOI

Pochanavanich P., Suntornsuk W. Fungal chitosan production and its characterization. Lett. Appl. Microbiol. 2002;35:17–21. doi: 10.1046/j.1472-765X.2002.01118.x. PubMed DOI

Walczak K., Schierz G., Basche S., Petto C., Boening K., Wieckiewicz M. Antifungal and Surface Properties of Chitosan-Salts Modified PMMA Denture Base Material. Molecules. 2020;25:5899. doi: 10.3390/molecules25245899. PubMed DOI PMC

Paradowska-Stolarz A., Wieckiewicz M., Owczarek A., Wezgowiec J. Natural Polymers for the Maintenance of Oral Health: Review of Recent Advances and Perspectives. Int. J. Mol. Sci. 2021;22:10337. doi: 10.3390/ijms221910337. PubMed DOI PMC

Lopez-Moya F., Suarez-Fernandez M., Lopez-Llorca L.V. Molecular Mechanisms of Chitosan Interactions with Fungi and Plants. Int. J. Mol. Sci. 2019;20:332. doi: 10.3390/ijms20020332. PubMed DOI PMC

Frank L.A., Onzi G.R., Morawski A.S., Pohlmann A.R., Guterres S.S., Contri R.V. Chitosan as a coating material for nanoparticles intended for biomedical applications. React. Funct. Polym. 2019;147:104459. doi: 10.1016/j.reactfunctpolym.2019.104459. DOI

Virkutyte J., Varma R.S. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. 2011;2:837–846. doi: 10.1039/C0SC00338G. DOI

Cheng F., Betts J.W., Kelly S.M., Schaller J., Heinze T. Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using aminocellulose as a combined reducing and capping reagent. Green Chem. 2013;15:989–998. doi: 10.1039/c3gc36831a. DOI

Kumar S.A., Abyaneh M.K., Gosavi S.W., Kulkarni S.K., Pasricha R., Ahmad A., Khan M.I. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett. 2007;29:439–445. doi: 10.1007/s10529-006-9256-7. PubMed DOI

Bhainsa K.C., D’Souza S. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surfaces B Biointerfaces. 2006;47:160–164. doi: 10.1016/j.colsurfb.2005.11.026. PubMed DOI

Shaligram N.S., Bule M., Bhambure R., Singhal R.S., Singh S.K., Szakacs G., Pandey A. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem. 2009;44:939–943. doi: 10.1016/j.procbio.2009.04.009. DOI

Balaji D., Basavaraja S., Deshpande R., Mahesh D.B., Prabhakar B., Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surfaces B Biointerfaces. 2009;68:88–92. doi: 10.1016/j.colsurfb.2008.09.022. PubMed DOI

Ingle A., Rai M., Gade A., Bawaskar M. Fusarium solani: A novel biological agent for the extracellular synthesis of silver nanoparticles. J. Nanopart. Res. 2009;11:2079–2085. doi: 10.1007/s11051-008-9573-y. DOI

Dauthal P., Mukhopadhyay M. Noble Metal Nanoparticles: Plant-Mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications. Ind. Eng. Chem. Res. 2016;55:9557–9577. doi: 10.1021/acs.iecr.6b00861. DOI

Cameron S.J., Sheng J., Hosseinian F., Willmore W.G. Nanoparticle Effects on Stress Response Pathways and Nanoparticle–Protein Interactions. Int. J. Mol. Sci. 2022;23:7962. doi: 10.3390/ijms23147962. PubMed DOI PMC

Sumanth B., Lakshmeesha T.R., Ansari M.A., A Alzohairy M., Udayashankar A.C., Shobha B., Niranjana S.R., Srinivas C., Almatroudi A. Mycogenic Synthesis of Extracellular Zinc Oxide Nanoparticles from Xylaria acuta and Its Nanoantibiotic Potential. Int. J. Nanomed. 2020;15:8519–8536. doi: 10.2147/IJN.S271743. PubMed DOI PMC

Mahapatra S., Banerjee D. Fungal Exopolysaccharide: Production, Composition and Applications. Microbiol. Insights. 2013;6:MBI.S10957-16. doi: 10.4137/MBI.S10957. PubMed DOI PMC

Banerjee A., Halder U., Bandopadhyay R. Preparations and Applications of Polysaccharide Based Green Synthesized Metal Nanoparticles: A State-of-the-Art. J. Clust. Sci. 2017;28:1803–1813. doi: 10.1007/s10876-017-1219-8. DOI

Emam H.E., Ahmed H.B. Polysaccharides templates for assembly of nanosilver. Carbohydr. Polym. 2016;135:300–307. doi: 10.1016/j.carbpol.2015.08.095. PubMed DOI

Mohamed A.A., Fouda A., Abdel-Rahman M.A., Hassan S.E.-D., El-Gamal M.S., Salem S.S., Shaheen T.I. Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatal. Agric. Biotechnol. 2019;19:101103. doi: 10.1016/j.bcab.2019.101103. DOI

Dhanjal D.S., Mehra P., Bhardwaj S., Singh R., Sharma P., Nepovimova E., Chopra C., Kuca K. Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology. Int. J. Nanomed. 2022;17:2505–2533. doi: 10.2147/IJN.S363282. PubMed DOI PMC

Gahlawat G., Choudhury A.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019;9:12944–12967. doi: 10.1039/C8RA10483B. PubMed DOI PMC

Loshchinina E.A., Vetchinkina E.P., Kupryashina M.A., Kursky V.F., Nikitina V.E. Nanoparticles synthesis by Agaricus soil basidiomycetes. J. Biosci. Bioeng. 2018;126:44–52. doi: 10.1016/j.jbiosc.2018.02.002. PubMed DOI

Vetchinkina E., Loshchinina E., Kupryashina M., Burov A., Pylaev T., Nikitina V. Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes. PeerJ. 2018;6:e5237. doi: 10.7717/peerj.5237. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace