Colloidal stability of phytosynthesised gold nanoparticles and their catalytic effects for nerve agent degradation
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33603017
PubMed Central
PMC7892814
DOI
10.1038/s41598-021-83460-1
PII: 10.1038/s41598-021-83460-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Herein, Tilia sp. bract leachate was used as the reducing agent for Au nanoparticles (Au NPs) phytosynthesis. The colloidal properties of the prepared Au NPs were determined to confirm their stability over time, and the NPs were then used as active catalysts in soman nerve agent degradation. The Au NPs characterisation, reproducibility and stability studies were performed under transmission electron microscopy, ultraviolet visible spectroscopy and with ζ-potential measurements. The reaction kinetics was detected by gas chromatography coupled with mass spectrometry detector and solid-phase micro-extraction to confirm the Au NPs applicability in soman hydrolysis. The 'green' phytosynthetic formation of colloidal crystalline Au NPs with dominant quasi-spherical shape and 55 ± 10 nm diameter was successfully achieved, and there were no significant differences in morphology, ζ-potential or absorbance values observed during the 5-week period. This verified the prepared colloids' long-term stability. The soman nerve agent was degraded to non-toxic substances within 24 h, with 0.2156 h-1 reaction rate constant. These results confirmed bio-nanotechnology's great potential in preparation of stable and functional nanocatalysts for degradation of hazardous substances, including chemical warfare agents.
Zobrazit více v PubMed
Kim K, Tsay OG, Atwood DA, Churchill DG. Destruction and detection of chemical warfare agents. Chem. Rev. 2011;111:5345–5403. doi: 10.1021/cr100193y. PubMed DOI
Plachá D, et al. Adsorption of nerve agent simulants onto vermiculite structure: experiments and modelling. J. Hazard. Mater. 2020;382:121001. doi: 10.1016/j.jhazmat.2019.121001. PubMed DOI
Štengl V, et al. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents. Mater. Charact. 2010;61:1080–1088. doi: 10.1016/j.matchar.2010.06.021. DOI
Alvaro M, et al. Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Appl. Catal. B. 2010;99:191–197. doi: 10.1016/j.apcatb.2010.06.019. DOI
Holišová V, et al. Biosilica-nanogold composite: Easy-to-prepare catalyst for soman degradation. Arab. J. Chem. 2019;12:262–271. doi: 10.1016/j.arabjc.2017.08.003. DOI
Liu XY, Wang A, Zhang T, Mou CY. Catalysis by gold: New insights into the support effect. Nano Today. 2013;8:403–416. doi: 10.1016/j.nantod.2013.07.005. DOI
Grisel R, Weststrate KJ, Gluhoi A, Nieuwenhuys BE. Catalysis by gold nanoparticles. Gold Bull. 2002;35:39–45. doi: 10.1007/BF03214836. DOI
Holišová V, et al. Magnetically modified nanogold-biosilica composite as an effective catalyst for CO oxidation. Arab. J. Chem. 2018;12:1148–1158. doi: 10.1016/j.arabjc.2018.12.002. DOI
Sarina HS, Eric R, Zhu W. Photocatalysis on supported gold and silver nanoparticles under ul- traviolet and visible light irradiation. Green Chem. 2013;15:1814–1833. doi: 10.1039/c3gc40450a. DOI
Bommavaram M, Korivi M, Borelli DPR, Pabbadhi JD, Nannepaga JS. Bacopa monniera stabilized gold nanoparticles (BmGNPs) alleviated the oxidative stress induced by aluminum in albino mice. Drug Inven. Today. 2013;5:113–118. doi: 10.1016/j.dit.2013.05.001. DOI
Kratošová G, et al. From biotechnology principles to functional and low-cost metallic bionanocatalysts. Biotechnol. Adv. 2019;37:154–176. doi: 10.1016/j.biotechadv.2018.11.012. PubMed DOI
He S, et al. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater. Lett. 2007;61:3984–3987. doi: 10.1016/j.matlet.2007.01.018. DOI
Brayner R, et al. Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J. Nanosci. Nanotechnol. 2007;7:2696–2708. doi: 10.1166/jnn.2007.600. PubMed DOI
Ullah S, et al. Bio-fabrication of catalytic platinum nanoparticles and their in vitro efficacy againts lungs cancer cell lines (A549) J. Photochem. Photobiol., B. 2017;173:368–375. doi: 10.1016/j.jphotobiol.2017.06.018. PubMed DOI
Irfan M, Ahmad T, Moniruzzaman MM, Abdullah BB, Bhattacharjee S. Ionic liquid mediated biosynthesis of gold nanoparticles using elaeis guineensis (oil palm) leaves extract. Proc. Eng. 2016;148:568–572. doi: 10.1016/j.proeng.2016.06.512. DOI
Das DK, Chakraborty A, Bhattacharjee S, Dey S. Biosynthesis of stabilised gold nanoparticle using an aglycone flavonoid, quercetin. J. Exp. Nanosci. 2013;8:649–655. doi: 10.1080/17458080.2011.591001. DOI
Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013;31:346–356. doi: 10.1016/j.biotechadv.2013.01.003. PubMed DOI
Lai X, et al. Rapid microwave-assisted bio-synthesized silver/Dandelion catalyst with superior catalytic performance for dyes degradation. J. Hazard. Mater. 2019;371:506–512. doi: 10.1016/j.jhazmat.2019.03.039. PubMed DOI
Konvickova Z, et al. Phytosynthesis of colloidal Ag–AgCl nanoparticles mediated by Tilia sp. leachate, evaluation of their behaviour in liquid phase and catalytic properties. Colloid Polym. Sci. 2018;296:677–687. doi: 10.1007/s00396-018-4290-2. DOI
Irfan M, Ahmad T, Moniruzzaman M, Bhattacharjee S, Abdullah B. Size and stability modulation of ionic liquid functionalized gold nanoparticles synthesized using Elaeis guineensis (oil palm) kernel extract. Arab. J. Chem. 2017;13:75–85. doi: 10.1016/j.arabjc.2017.02.001. DOI
Bhattacharjee S. DLS and zeta potential: what they are and what they are not? J. Control. Release. 2016;235:337–351. doi: 10.1016/j.jconrel.2016.06.017. PubMed DOI
Choi Y, Choi M-J, Cha S-H, et al. Catechin-capped gold nanoparticles: green synthesis, characterization, and catalytic activity toward 4-nitrophenol reduction. Nanoscale Res. Lett. 2014;9:103. doi: 10.1186/1556-276X-9-103. PubMed DOI PMC
Gavade NL, Kadam AN, Suwarnkar MB, Ghodake VP, Garadkar KM. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015;136:953–960. doi: 10.1016/j.saa.2014.09.118. PubMed DOI
Sheny DS, Mathew J, Philip D. Synthesis characterization and catalytic action of hexagonal gold nanoparticles using essential oils extracted from Anacardium occidentale. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012;97:306–310. doi: 10.1016/j.saa.2012.06.009. PubMed DOI
Amendola V, Meneghetti M. Size evaluation of gold nanoparticles by UV−vis spectroscopy. J. Phys. Chem. C. 2009;113:4277–4285. doi: 10.1021/jp8082425. DOI
Nanocomposix - Gold Nanoparticles: Optical Properties. (2020). https://nanocomposix.com/pages/gold-nanoparticles-optical-properties.
Cittan M, Altuntaş E, Çelik A. Evaluation of antioxidant capacities and phenolic profiles in Tilia cordata fruit extracts: a comparative study to determine the efficiency of traditional hot water infusion method. Ind. Crops Prod. 2018;122:553–558. doi: 10.1016/j.indcrop.2018.06.044. DOI
Barreiro Arcos ML, et al. Tilia cordata Mill. Extracts and scopoletin (isolated compound): differential cell growth effects on lymphocytes. Phytother. Res. PTR. 2006;20:34–40. doi: 10.1002/ptr.1798. PubMed DOI
Wang W, et al. One-step synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-(N-vinyl-2-pyrrolidone) Colloids Surf. A. 2007;301:73–79. doi: 10.1016/j.colsurfa.2006.12.037. DOI
Karioti A, Chiarabini L, Alachkar A, Fawaz Chehna M, Vincieri FF, Bilia AR. HPLC–DAD and HPLC–ESI-MS analyses of Tiliae flos and its preparations. J. Pharmac. Biomed. Anal. 2014;100:205–214. doi: 10.1016/j.jpba.2014.08.010. PubMed DOI
Oniszczuk A, Podgórski R. Influence of different extraction methods on the quantification of selected flavonoids and phenolic acids from Tilia cordata inflorescence. Ind. Crops Prod. 2015;76:509–514. doi: 10.1016/j.indcrop.2015.07.003. DOI
Holišová V, et al. Phytosynthesis of Au and Au/ZrO 2 bi-phasic system nanoparticles with evaluation of their colloidal stability. J. Nanosci. Nanotechnol. 2019;19:2807–2813. doi: 10.1166/jnn.2019.15851. PubMed DOI
Hashmi ASK. Gold-catalyzed organic reactions. Top. Organomet. Chem. 2013;44:143–164. doi: 10.1007/3418_2012_45. DOI
Seto Y, Tachikawa M, Kanamori-kataoka M, Sasamoto K, Ochiai N. Target analysis of tert-butyldimethylsilyl derivatives of nerve agent hydrolysis products by selectable one-dimensional or two-dimensional gas chromatography–mass spectrometry. J. Chromatogr. A. 2017;1501:99–106. doi: 10.1016/j.chroma.2017.04.024. PubMed DOI
Vellingiri K, Philip L, Kim K. Metal–organic frameworks as media for the catalytic degradation of chemical warfare agents. Coord. Chem. Rev. 2017;353:159–179. doi: 10.1016/j.ccr.2017.10.010. DOI
Effective and reproducible biosynthesis of nanogold-composite catalyst for paracetamol oxidation
Mycosynthesis of Metal-Containing Nanoparticles-Fungal Metal Resistance and Mechanisms of Synthesis