Influence of subinhibitory concentrations of amikacin and ciprofloxacin on morphology and adherence ability of uropathogenic strains
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
18062193
DOI
10.1007/bf02932099
Knihovny.cz E-zdroje
- MeSH
- amikacin farmakologie MeSH
- antiinfekční látky farmakologie MeSH
- bakteriální adheze účinky léků MeSH
- ciprofloxacin farmakologie MeSH
- Enterobacteriaceae účinky léků růst a vývoj ultrastruktura MeSH
- enterobakteriální infekce mikrobiologie moč MeSH
- epitelové buňky MeSH
- infekce močového ústrojí mikrobiologie moč MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mikroskopie elektronová rastrovací MeSH
- mikroskopie fázově kontrastní MeSH
- transmisní elektronová mikroskopie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amikacin MeSH
- antiinfekční látky MeSH
- ciprofloxacin MeSH
The influence of subinhibitory concentrations (1/2, 1/4, 1/8, 1/16 and 1/32 MIC) of amikacin and ciprofloxacin on the morphology and adherence of uropathogenic strains was studied. Intensity of morphological changes was proportional to the concentrations of these antibiotics. Morphological changes were the most prominent after bacterial exposure to sub-MICs of ciprofloxacin. These concentrations, especially 1/2 MIC of ciprofloxacin, induced the formation of filaments of E. coli, K. pneumoniae, K. oxytoca, E. cloacae and A. calcoaceticus biotype anitratus. No morphological changes were observed in P. aeruginosa, S. epidermidis and S. aureus cells after exposure to subinhibitory concentrations of both antibiotics. Sub-MICs of amikacin affected the changes in cell shape only slightly. The exposure of bacterial strains to 1/2 MIC of ciprofloxacin induced increased vacuolation of the cells. We observed shrinkage of the protoplasm and the pleated cell walls in comparison with control cells. The greatest loss of adherence ability occurred at 1/2 MIC of ciprofloxacin after a 1-d incubation.
Zobrazit více v PubMed
Folia Microbiol (Praha). 2006;51(6):633-8 PubMed
Diagn Microbiol Infect Dis. 1993 May-Jun;16(4):277-89 PubMed
Folia Microbiol (Praha). 2003;48(5):659-63 PubMed
Drugs Exp Clin Res. 1986;12(8):653-6 PubMed
J Antimicrob Chemother. 1997 Jan;39(1):79-84 PubMed
Tohoku J Exp Med. 1987 Jun;152(2):119-28 PubMed
Folia Microbiol (Praha). 2006;51(5):381-6 PubMed
Drugs Exp Clin Res. 1988;14(10):629-34 PubMed
J Antimicrob Chemother. 1992 May;29(5):529-38 PubMed
J Bacteriol. 1997 Mar;179(6):1931-9 PubMed
J Chemother. 2004 Feb;16(1):30-7 PubMed
Enferm Infecc Microbiol Clin. 2005 Dec;23 Suppl 4:3-8 PubMed
Annu Rev Biochem. 1983;52:825-69 PubMed
Eur Respir J. 2003 Mar;21(3):401-6 PubMed
J Antimicrob Chemother. 2001 Jul;48(1):37-45 PubMed
Antimicrob Agents Chemother. 2005 Mar;49(3):1002-9 PubMed
J Med Microbiol. 2004 Sep;53(Pt 9):903-910 PubMed
Antimicrob Agents Chemother. 1999 May;43(5):1013-9 PubMed
Indian J Med Microbiol. 2005 Apr;23(2):102-5 PubMed
Med Dosw Mikrobiol. 2003;55(1):1-10 PubMed
J Chemother. 2000 Dec;12(6):487-90 PubMed
J Chemother. 1996 Aug;8(4):254-60 PubMed
J Antimicrob Chemother. 2000 Jan;45(1):15-25 PubMed
Chemotherapy. 1996 May-Jun;42(3):177-85 PubMed
Folia Microbiol (Praha). 1997;42(6):565-8 PubMed
Alterations of growth rate and gene expression levels of UPEC by antibiotics at sub-MIC
High level of quinolone resistance in Escherichia coli from healthy chicken broilers