Seasonal dynamics of stem N2O exchange follow the physiological activity of boreal trees
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31676776
PubMed Central
PMC6825224
DOI
10.1038/s41467-019-12976-y
PII: 10.1038/s41467-019-12976-y
Knihovny.cz E-zdroje
- MeSH
- atmosféra chemie MeSH
- ekosystém * MeSH
- methan metabolismus MeSH
- oxid dusný metabolismus MeSH
- oxid uhličitý metabolismus MeSH
- půda chemie MeSH
- roční období * MeSH
- stonky rostlin metabolismus MeSH
- stromy fyziologie MeSH
- tajga * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Finsko MeSH
- Názvy látek
- methan MeSH
- oxid dusný MeSH
- oxid uhličitý MeSH
- půda MeSH
The role of trees in the nitrous oxide (N2O) balance of boreal forests has been neglected despite evidence suggesting their substantial contribution. We measured seasonal changes in N2O fluxes from soil and stems of boreal trees in Finland, showing clear seasonality in stem N2O flux following tree physiological activity, particularly processes of CO2 uptake and release. Stem N2O emissions peak during the vegetation season, decrease rapidly in October, and remain low but significant to the annual totals during winter dormancy. Trees growing on dry soils even turn to consumption of N2O from the atmosphere during dormancy, thereby reducing their overall N2O emissions. At an annual scale, pine, spruce and birch are net N2O sources, with spruce being the strongest emitter. Boreal trees thus markedly contribute to the seasonal dynamics of ecosystem N2O exchange, and their species-specific contribution should be included into forest emission inventories.
Zobrazit více v PubMed
Kuusela K. The boreal forests: an overview. Unasylva. 1992;170:3–13.
Dalal RC, Allen DE. Turner Review No. 18: Greenhouse gas fluxes from natural ecosystems. Aust. J. Bot. 2008;56:369–407. doi: 10.1071/BT07128. DOI
Korhonen, K. T. et al. Suomen metsät 2004–2008 ja niiden kehitys 1921–2008. Metsätieteen aikakauskirja 3/2013, 269–608 (2013).
IPCC. in Climate Change 2013: The Physical Science Basis. (eds Stocker, T. F. et al.) (IPCC: Intergovernmental Panel on Climate Change, Cambridge University Press, 2013).
Wrage N, Velthof GL, van Beusichem ML, Oenema O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 2001;33:1723–1732. doi: 10.1016/S0038-0717(01)00096-7. DOI
Smith KA, et al. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur. J. Soil. Sci. 2003;54:779–791. doi: 10.1046/j.1351-0754.2003.0567.x. DOI
Rütting T, Boeckx P, Müller C, Klemedtsson L. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences. 2011;8:1779–1791. doi: 10.5194/bg-8-1779-2011. DOI
Pihlatie M, Ambus P, Rinne J, Pilegaard K, Vesala T. Plant-mediated nitrous oxide emissions from beech (Fagus sylvatica) leaves. New Phytol. 2005;168:93–98. doi: 10.1111/j.1469-8137.2005.01542.x. PubMed DOI
Machacova K, Papen H, Kreuzwieser J, Rennenberg H. Inundation strongly stimulates nitrous oxide emissions from stems of the upland tree Fagus sylvatica and the riparian tree Alnus glutinosa. Plant Soil. 2013;364:287–301. doi: 10.1007/s11104-012-1359-4. DOI
Smart DR, Bloom AJ. Wheat leaves emit nitrous oxide during nitrate assimilation. Proc. Natl. Acad. Sci. USA. 2001;98:7875–7878. doi: 10.1073/pnas.131572798. PubMed DOI PMC
Machacova K, Maier M, Svobodova K, Lang F, Urban O. Cryptogamic stem covers may contribute to nitrous oxide consumption by mature beech trees. Sci. Rep. 2017;7:13243. doi: 10.1038/s41598-017-13781-7. PubMed DOI PMC
Yu, K. & Chen, G. in Nitrous Oxide Emissions Research Progress (eds Sheldon, A. I. & Barnhart, E. P.) 85–104 (Nova Science Publishers, Hauppauge, NY, USA, 2009).
Machacova K, et al. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest. Sci. Rep. 2016;6:23410. doi: 10.1038/srep23410. PubMed DOI PMC
Wen Y, Corre MD, Rachow C, Chen L, Veldkamp E. Nitrous oxide emissions from stems of alder, beech and spruce in a temperate forest. Plant Soil. 2017;420:423–434. doi: 10.1007/s11104-017-3416-5. DOI
Rusch H, Rennenberg H. Black alder (Alnus glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant Soil. 1998;201:1–7. doi: 10.1023/A:1004331521059. DOI
McBain MC, Warland JS, McBride RA, Wagner-Riddle C. Laboratory-scale measurements of N2O and CH4 emissions from hybrid poplars (Populus deltoides x Populus nigra) Waste Manag. Res. 2004;22:454–465. doi: 10.1177/0734242X04048832. PubMed DOI
Díaz-Pinés E, et al. Nitrous oxide emissions from stems of ash (Fraxinus angustifolia Vahl) and European beech (Fagus sylvatica L.) Plant Soil. 2015;398:35–45. doi: 10.1007/s11104-015-2629-8. DOI
Sevanto S, et al. Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiol. 2006;26:749–757. doi: 10.1093/treephys/26.6.749. PubMed DOI
Kolari P, et al. CO2 exchange and component CO2 fluxes of a boreal Scots pine forest. Boreal Environ. Res. 2009;14:761–783.
Chang C, Janzen HH, Cho CM, Nakonechny EM. Nitrous oxide emission through plants. Soil Sci. Soc. Am. J. 1998;62:35–38. doi: 10.2136/sssaj1998.03615995006200010005x. DOI
Goshima N, et al. Emission of nitrous oxide (N2O) from transgenic tobacco expressing antisense NiR mRNA. Plant J. 1999;19:75–80. doi: 10.1046/j.1365-313X.1999.00494.x. PubMed DOI
Hakata M, Takahashi M, Zumft W, Sakamoto A, Morikawa H. Conversion of the nitrate nitrogen and nitrogen dioxide to nitrous oxides in plants. Acta Biotechnol. 2003;23:249–257. doi: 10.1002/abio.200390032. DOI
Albert KR, Bruhn A, Ambus P. Nitrous oxide emission from Ulva lactuca incubated in batch cultures is stimulated by nitrite, nitrate and light. J. Exp. Mar. Biol. Ecol. 2013;448:37–45. doi: 10.1016/j.jembe.2013.06.010. DOI
Lenhart K, et al. Nitrous oxide and methane emissions from cryptogamic covers. Glob. Change Biol. 2015;21:3889–3900. doi: 10.1111/gcb.12995. PubMed DOI
Lenhart K, et al. Nitrous oxide effluxes from plants as a potentially important source to the atmosphere. New Phytol. 2019;221:1398–1408. doi: 10.1111/nph.15455. PubMed DOI
Yu KW, Wang ZP, Chen GX. Nitrous oxide and methane transport through rice plants. Biol. Fert. Soils. 1997;24:341–343. doi: 10.1007/s003740050254. DOI
Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E. Testing a conceptual model of soil emissions of nitrous and nitric oxides. BioScience. 2000;50:667–680. doi: 10.1641/0006-3568(2000)050[0667:TACMOS]2.0.CO;2. DOI
Papen, H. et al. in Tree Species Effects on Soils: Implications for Global Change (eds Binkley, D. & Menyailo, O.) 165–172 (NATO Science Series IV-Earth and Environmental Sciences, Springer Netherlands, 2005).
Menyailo OV, Hungate BA, Zech W. The effect of single tree species on soil microbial activities related to C and N cycling in the Siberian artificial afforestation experiment—tree species and soil microbial activities. Plant Soil. 2002;242:183–196. doi: 10.1023/A:1016245619357. DOI
Menyailo, O. V. & Hungate, B. A. in Tree Species Effects on Soils: Implications for Global Change (eds Binkley, D. & Menyailo, O. V.) 293–305 (NATO Science Series, Kluwer Academic Publishers, Dordrecht, 2005).
Menyailo OV, Hungate BA. Tree species and moisture effects on soil sources of N2O: Quantifying contributions from nitrification and denitrification with 18O isotopes. J. Geophys. Res. 2006;111:G02022. doi: 10.1029/2005JG000058. DOI
Kieloaho AJ, et al. Stimulation of soil organic nitrogen pool: The effect of plant and soil organic matter degrading enzymes. Soil Biol. Biochem. 2016;96:97–106. doi: 10.1016/j.soilbio.2016.01.013. DOI
Walker TS, Bais HP, Grotewold E, Vivanco JM. Root exudation and rhizosphere biology. Plant Physiol. 2003;132:44–51. doi: 10.1104/pp.102.019661. PubMed DOI PMC
Colmer TD. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 2003;26:17–36. doi: 10.1046/j.1365-3040.2003.00846.x. DOI
Wassmann R, Aulakh MS. The role of rice plants in regulating mechanisms of methane emissions. Biol. Fert. Soils. 2000;31:20–29. doi: 10.1007/s003740050619. DOI
Prendergast-Miller MT, Baggs EM, Johnson D. Nitrous oxide production by the ectomycorrhizal fungi Paxillus involutus and Tylospora fibrillosa. FEMS Microbiol. Lett. 2011;316:31–35. doi: 10.1111/j.1574-6968.2010.02187.x. PubMed DOI
Okiobe ST, Augustin J, Mansour I, Veresoglou SD. Disentangling direct and indirect effects of mycorrhiza on nitrous oxide activity and denitrification. Soil Biol. Biochem. 2019;134:142–151. doi: 10.1016/j.soilbio.2019.03.025. DOI
Bender SF, et al. Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. ISME J. 2014;8:1336–1345. doi: 10.1038/ismej.2013.224. PubMed DOI PMC
Bender SF, Conen F, Van der Heijden MGA. Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biol. Biochem. 2015;80:283–292. doi: 10.1016/j.soilbio.2014.10.016. DOI
Bruhn D, Albert KR, Mikkelsen TN, Ambus P. UV-induced N2O emission from plants. Atmos. Environ. 2014;99:206–214. doi: 10.1016/j.atmosenv.2014.09.077. DOI
Thornley JHM. Plant growth and respiration re-visited: maintenance respiration defined—it is an emergent property of, not a separate process within, the system—and why the respiration: photosynthesis ratio is conservative. Ann. Bot. 2011;108:1365–1380. doi: 10.1093/aob/mcr238. PubMed DOI PMC
Lintunen A, et al. Bursts of CO2 released during freezing offer a new perspective on avoidance of winter embolism in trees. Ann. Bot. 2014;114:1711–1718. doi: 10.1093/aob/mcu190. PubMed DOI PMC
Evans DE. Aerenchyma formation. New Phytol. 2003;161:35–49. doi: 10.1046/j.1469-8137.2003.00907.x. DOI
Arbellay E, Stoffel M, Bollschweiler M. Wood anatomical analysis of Alnus incana and Betula pendula injured by a debris-flow event. Tree Physiol. 2010;30:1290–1298. doi: 10.1093/treephys/tpq065. PubMed DOI
Sorz J, Hietz P. Gas diffusion through wood: implications for oxygen supply. Trees. 2006;20:34–41. doi: 10.1007/s00468-005-0010-x. DOI
Chapuis-Lardy L, Wrage N, Metay A, Chotte JL, Bernoux M. Soils, a sink for N2O? A review. Glob. Change Biol. 2007;13:1–17. doi: 10.1111/j.1365-2486.2006.01280.x. DOI
Lendzian KJ. Survival strategies of plants during secondary growth: barrier properties of phellems and lenticels towards water, oxygen, and carbon dioxide. J. Exp. Bot. 2006;57:2535–2546. doi: 10.1093/jxb/erl014. PubMed DOI
Pihlatie M, et al. Gas concentration driven fluxes of nitrous oxide and carbon dioxide in boreal forest soil. Tellus. 2007;59B:458–469. doi: 10.1111/j.1600-0889.2007.00278.x. DOI
Mäkisara, K., Katila, M., Peräsaari, J. & Tomppo, E. in Natural Resources and Bioeconomy Studies 10/2016 (Natural Resources Institute Finland, 2016).
Dobrovolny L. Density and spatial distribution of beech (Fagus sylvatica L.) regeneration in Norway spruce (Picea abies (L.) Karsten) stands in the central part of the Czech Republic. IForest-Biogeosciences Forestry. 2016;9:666–672. doi: 10.3832/ifor1581-008. DOI
Ge ZM, et al. Impacts of changing climate on the productivity of Norway spruce dominant stands with a mixture of Scots pine and birch in relation to water availability in southern and northern Finland. Tree Physiol. 2011;31:323–338. doi: 10.1093/treephys/tpr001. PubMed DOI
Bowatte S, et al. Emissions of nitrous oxide from the leaves of grasses. Plant Soil. 2014;374:275–283. doi: 10.1007/s11104-013-1879-6. DOI
Simpson IJ, Edwards GC, Thurtell GW. Micrometeorological measurements of methane and nitrous oxide exchange above a boreal aspen forest. J. Geophys. R. 1997;102:29331–29341. doi: 10.1029/97JD03181. DOI
Eugster W, et al. Methodical study of nitrous oxide eddy covariance measurements using quantum cascade laser spectrometery over a Swiss forest. Biogeosciences. 2007;4:927–939. doi: 10.5194/bg-4-927-2007. DOI
Nicolini G, Castaldi S, Fratini G, Valentini R. A literature overview of micrometeorological CH4 and N2O flux measurements in terrestrial ecosystems. Atmos. Environ. 2013;81:311–319. doi: 10.1016/j.atmosenv.2013.09.030. DOI
Högberg P, Näsholm T, Franklin O, Högberg MN. Tamm review: on the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests. For. Ecol. Manag. 2017;403:161–185. doi: 10.1016/j.foreco.2017.04.045. DOI
Aber J, et al. Nitrogen saturation in temperate forest ecosystems—hypotheses revisited. Bioscience. 1998;48:921–934. doi: 10.2307/1313296. DOI
Butterbach-Bahl K, Gasche R, Willibald G, Papen H. Exchange of N-gases at the Hoglwald Forest—a summary. Plant Soil. 2002;240:117–123. doi: 10.1023/A:1015825615309. DOI
Kreutzer K, Butterbach-Bahl K, Rennenberg H, Papen H. The complete nitrogen cycle of an N-saturated spruce forest ecosystem. Plant Biol. 2009;11:643–649. doi: 10.1111/j.1438-8677.2009.00236.x. PubMed DOI
Pirinen, P. et al. Tilastoja Suomen Ilmastosta 1981–2010 (Climatological Statistics of Finland 1981–2010) 1–96 (Finnish Meteorological Institute Reports 2012/1, Helsinki, 2012).
Maier M, Machacova K, Lang F, Svobodova K, Urban O. Combining soil and tree-stem flux measurements and soil gas profiles to understand CH4 pathways in Fagus sylvatica forests. J. Plant Nutr. Soil Sci. 2018;181:31–35. doi: 10.1002/jpln.201600405. DOI
Pihlatie M, et al. Comparison of static chambers to measure CH4 emissions from soils. Agr. For. Meteorol. 2013;171–172:124–136. doi: 10.1016/j.agrformet.2012.11.008. DOI
Pumpanen J, et al. Respiration in boreal forest soil as determined from carbon dioxide concentration profile. Soil Sci. Soc. Am. J. 2008;72:1187–1196. doi: 10.2136/sssaj2007.0199. DOI
Ilvesniemi H, et al. Water balance of a boreal Scots pine forest. Boreal Environ. Res. 2010;15:375–396.
Hari, P. et al. in Physical and Physiological Forest Ecology (eds Hari, P., Heliövaara, K. & Kulmala, L.) 471–487 (Springer Science, 2013).
Rannik Ü, Keronen P, Hari P, Vesala T. Estimation of forest–atmosphere CO2 exchange by eddy covariance and profile techniques. Agr. For. Meteorol. 2004;126:141–155. doi: 10.1016/j.agrformet.2004.06.010. DOI
Mammarella I, et al. Relative humidity effect on the high-frequency attenuation of water vapor flux measured by a closed-path eddy covariance system. J. Atmos. Ocean. Tech. 2009;26:1856–1866. doi: 10.1175/2009JTECHA1179.1. DOI
Machacova, K. et al. Summer fluxes of nitrous oxide from boreal forest. In Global Change: A Complex Challenge, Conference Proceedings, 78–81 (Global Change Research Center, Brno, 2015).