Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26997421
PubMed Central
PMC4800674
DOI
10.1038/srep23410
PII: srep23410
Knihovny.cz E-zdroje
- MeSH
- borovice lesní chemie MeSH
- methan analýza metabolismus MeSH
- oxid dusný analýza metabolismus MeSH
- půda chemie MeSH
- skleníkový efekt MeSH
- tajga * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- methan MeSH
- oxid dusný MeSH
- půda MeSH
Boreal forests comprise 73% of the world's coniferous forests. Based on forest floor measurements, they have been considered a significant natural sink of methane (CH4) and a natural source of nitrous oxide (N2O), both of which are important greenhouse gases. However, the role of trees, especially conifers, in ecosystem N2O and CH4 exchange is only poorly understood. We show for the first time that mature Scots pine (Pinus sylvestris L.) trees consistently emit N2O and CH4 from both stems and shoots. The shoot fluxes of N2O and CH4 exceeded the stem flux rates by 16 and 41 times, respectively. Moreover, higher stem N2O and CH4 fluxes were observed from wet than from dry areas of the forest. The N2O release from boreal pine forests may thus be underestimated and the uptake of CH4 may be overestimated when ecosystem flux calculations are based solely on forest floor measurements. The contribution of pine trees to the N2O and CH4 exchange of the boreal pine forest seems to increase considerably under high soil water content, thus highlighting the urgent need to include tree-emissions in greenhouse gas emission inventories.
Department of Food and Environmental Sciences University of Helsinki P O Box 56 FI 00014 Finland
Department of Forest Sciences University of Helsinki P O Box 27 FI 00014 Finland
Department of Physics University of Helsinki P O Box 48 FI 00014 Finland
Global Change Research Institute CAS Bělidla 4a CZ 603 00 Brno Czech Republic
Zobrazit více v PubMed
Smith K. A. et al. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur. J. Soil. Sci. 54, 779–791 (2003).
Bosse U. & Frenzel P. Activity and distribution of methane-oxidizing bacteria in flooded rice soil microcosms and in rice plants (Oryza sativa). Appl. Environ. Microb. 63, 1199–1207 (1997). PubMed PMC
Butterbach-Bahl K., Papen H. & Rennenberg H. Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ. 20, 1175–1183 (1997).
Yu K. W., Wang Z. P. & Chen G. X. Nitrous oxide and methane transport through rice plants. Biol. Fert. Soils 24, 341–343 (1997).
Rusch H. & Rennenberg H. Black alder (Alnus glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant Soil 201, 1–7 (1998).
Nouchi I., Mariko S. & Aoki K. Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiol. 94, 59–66 (1990). PubMed PMC
McBain M. C., Warland J. S., McBride R. A. & Wagner-Riddle C. Laboratory-scale measurements of N2O and CH4 emissions from hybrid poplars (Populus deltoides × Populus nigra). Waste Manage. Res. 22, 454–465 (2004). PubMed
Pihlatie M., Ambus P., Rinne J., Pilegaard K. & Vesala T. Plant-mediated nitrous oxide emissions from beech (Fagus sylvatica) leaves. New Phytol. 168, 93–98 (2005). PubMed
Machacova K., Papen H., Kreuzwieser J. & Rennenberg H. Inundation strongly stimulates nitrous oxide emissions from stems of the upland tree Fagus sylvatica and the riparian tree Alnus glutinosa. Plant Soil 364, 287–301 (2013).
Terazawa K., Ishizuka S., Sakata T., Yamada K. & Takahashi M. Methane emissions from stems of Fraxinus mandshurica var. japonica trees in a floodplain forest. Soil Biol. Biochem. 39, 2689–2692 (2007).
Pangala S. R., Gowing D. J., Hornibrook E. R. C. & Gauci V. Controls on methane emissions from Alnus glutinosa samplings. New Phytol. 201, 887–896 (2014). PubMed
Pangala S. R., Hornibrook E. R. C., Gowing D. J. & Gauci V. The contribution of trees to ecosystem methane emissions in a temperate forested wetland. Glob. Change Biol. 21, 2642–2654 (2015). PubMed
Díaz-Pinés E. et al. Nitrous oxide emissions from stems of ash (Fraxinus angustifolia Vahl) and European beech (Fagus sylvatica L.). Plant Soil. 10.1007/s11104-015-2629-8 (2015). DOI
Mukhin V. A. & Voronin P. Y. Methanogenic activity of woody plants. Russ. J. Plant Physiol. 56, 138–140 (2009).
Mukhin V. A. & Voronin P. Y. Methane emission from living tree wood. Russ. J. Plant Physiol. 58, 344–350 (2011).
Covey K. R., Wood S. A., Warren R. J., Lee X. & Bradford M. A. Elevated methane concentrations in trees of an upland forest. Geophys. Res. Lett. 39, 10.1029/2012GL052361 (2012). DOI
Keppler F., Hamilton J. T. G., Brass M. & Röckmann T. Methane emissions from terrestrial plants under aerobic conditions. Nature 439, 187–191 (2006). PubMed
Vigano I. et al. Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences 5, 937–947 (2008).
Smart D. R. & Bloom A. J. Wheat leaves emit nitrous oxide during nitrate assimilation. P. Natl. Acad. Sci. USA 98, 7875–7878 (2001). PubMed PMC
Sundqvist E., Crill P., Mölder M., Vestin P. & Lindroth A. Atmospheric methane removal by boreal plants. Geophys. Res. Lett. 39, 10.1029/2012GL053592 (2012). DOI
Anderson B. et al. Methane and Nitrous Oxide Emissions from Natural Sources. Office of Atmospheric Programs, EPA (United States Environmental Protection Agency), Washington D.C., USA (2010).
Ito A. & Inatomi M. Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty. Biogeosciences 9, 759–773 (2012).
Korhonen J. F. J. et al. Nitrogen balance of a boreal Scots pine forest. Biogeosciences 10, 1083–1095 (2013).
Pihlatie M. et al. Gas concentration driven fluxes of nitrous oxide and carbon dioxide in boreal forest soil. Tellus 59B, 458–469 (2007).
Dalal R. C. & Allen D. E. Turner Review No. 18: Greenhouse gas fluxes from natural ecosystems. Aust. J. Bot. 56, 369–407 (2008).
Intergovernmental Panel on Climate Change. Climate Change 2013 The Physical Science Basis. (eds Stocker T. F. et al. ), Cambridge University Press, Cambridge, UK (2013).
Butterbach-Bahl K., Rothe A. & Papen H. Effect of tree distance on N2O and CH4-fluxes from soils in temperate forest ecosystems. Plant Soil 240, 91–103 (2002).
Von Arnold K. et al. Can distribution of trees explain variation in nitrous oxide fluxes? Scand. J. Forest Res. 20, 481–489 (2005).
Dutaur L. & Verchot L. W. Global inventory of the soil CH4 sink. Global Biogeochem. Cy. 21, 10.1029/2006GB002734 (2007). DOI
Sorz J. & Hietz P. Gas diffusion through wood: implications for oxygen supply. Trees 20, 34–41 (2006).
Hölttä T. & Kolari P. Interpretation of stem CO2 efflux measurements. Tree Physiol. 29, 1447–1456 (2009). PubMed
Pihlatie M. et al. Methane fluxes in boreal forest soil. in Boreal Forest and Climate Change. (eds Hari P. & Kulmala L. ), Springer, The Netherlands, 393–398 (2008).
Ilvesniemi H. & Liu C. Biomass distribution in a young Scots pine stand. Boreal Environ. Res. 6, 3–8 (2001).
Hari P. & Kulmala M. Station for measuring ecosystem - atmosphere relations (SMEAR II). Boreal Environ. Res. 10, 315–322 (2005).
Pirinen P. et al. Tilastoja Suomen Ilmastosta 1981–2010 (Climatological Statistics of Finland 1981–2010). Finnish Meteorological Institute Reports 2012/1, Helsinki, 1–96 (2012).
Ilvesniemi H. et al. Long-term measurements of the carbon balance of a boreal Scots pine dominated forest ecosystem. Boreal Environ. Res. 14, 731–753 (2009).
Kolari P. et al. CO2 exchange and component CO2 fluxes of a boreal Scots pine forest. Boreal Environ. Res. 14, 761–783 (2009).
Yassaa N. et al. Diel cycles of isoprenoids in the emissions of Norway spruce, four Scots pine chemotypes, and in boreal forest ambient air during HUMPPA-COPEC-2010. Atmos. Chem. Phys. 12, 7215–7229 (2012).
Altimir N., Vesala T., Keronen P., Kulmala M. & Hari P. Methodology for direct field measurements of ozone flux to foliage with shoot chambers. Atmos. Environ. 36, 19–29 (2002).
Pihlatie M. K. et al. Comparison of static chambers to measure CH4 emissions from soils. Agr. Forest Meteorol. 171–172, 124–136 (2013).
Repola J., Ojansuu R. & Kukkola M. Biomass Functions for Scots Pine, Norway Spruce and Birch in Finland. Working Papers of the Finnish Forest Research Institute 53, Finnish Forest Research Institute, Helsinki, Finland (2007).
Mencuccini M. & Bonosi L. Leaf/sapwood area ratios in Scots pine show acclimation across Europe. Can. J. For. Res. 31, 442–456 (2001).
Levy P. E. et al. Quantification of uncertainty in trace gas fluxes measured by the static chamber method. Eur. J. Soil Sci. 62, 811–821 (2011).
Urban O. et al. Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Funct. Ecol. 26, 46–55 (2012).
Ilvesniemi H. et al. Water balance of a boreal Scots pine forest. Boreal Environ. Res. 15, 375–396 (2010).
Pumpanen J. et al. Respiration in boreal forest soil as determined from carbon dioxide concentration profile. Soil Sci. Soc. Am. J. 72 (5), 1187–1196 (2008).
Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987). PubMed
Hölttä T., Mäkinen H., Nöjd P., Mäkelä A. & Nikinmaa E. A physiological model of softwood cambial growth. Tree Physiol. 30, 1235–1252 (2010). PubMed
Altimir N. et al. Foliage surface ozone deposition: a role for surface moisture? Biogeosciences 3, 209–228 (2006).
Seasonal dynamics of stem N2O exchange follow the physiological activity of boreal trees
Cryptogamic stem covers may contribute to nitrous oxide consumption by mature beech trees
Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change